001     1019998
005     20240105202147.0
037 _ _ |a FZJ-2023-05813
100 1 _ |a Hoppe, Fabian
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
111 2 _ |a Helmholtz AI Conference
|c Hamburg
|d 2023-06-12 - 2023-06-14
|w Germany
245 _ _ |a Scaling data-intensive analytics with Heat: a Python library for massively-parallel array computing and machine learning
260 _ _ |c 2023
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1704436025_29017
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Manipulating and processing massive data sets is challenging. For the vast majority of research communities, those without a background in high-performance computing, the standard approach involves breaking up and analyzing data in smaller chunks, an inefficient and very prone-to-errors process.The Helmholtz Analytics Toolkit (Heat) library offers a solution to this problem by providing memory-distributed and hardware-accelerated array manipulation, data analytics, and machine learning algorithms in Python. Developed in collaboration by three institutions of the Helmholtz Association (KIT, FZJ, DLR), Heat: enables memory distribution of n-dimensional arrays, adopts PyTorch as process-local compute engine (hence supporting GPU-acceleration), provides memory-distributed (i.e., multi-node, multi-GPU) array operations and algorithms, optimizing asynchronous MPI-communication under the hood, and wraps functionalities in NumPy- or scikit-learn-like API to achieve porting of existing applications with minimal changes.In this presentation, we will provide an overview of the Heat library's features and capabilities and discuss its role in the ecosystem of distributed array computing and machine learning in Python. Additionally, we will highlight Heat's role as a platform for cross-discipline collaboration in data-intensive research, and address technical and operational challenges in Heat development.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 1
536 _ _ |a SLNS - SimLab Neuroscience (Helmholtz-SLNS)
|0 G:(DE-Juel1)Helmholtz-SLNS
|c Helmholtz-SLNS
|x 2
700 1 _ |a Comito, Claudia
|0 P:(DE-Juel1)174573
|b 1
700 1 _ |a Gutiérrez Hermosillo Muriedas, Juan Pedro
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Götz, Markus
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Hagemeier, Björn
|0 P:(DE-Juel1)132123
|b 4
700 1 _ |a Knechtges, Philipp
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Krajsek, Kai
|0 P:(DE-Juel1)129347
|b 6
700 1 _ |a Rüttgers, Alexander
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Streit, Achim
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Tarnawa, Michael
|0 P:(DE-Juel1)178977
|b 9
856 4 _ |u https://helmholtzai-conference2023.de/program/
909 C O |o oai:juser.fz-juelich.de:1019998
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)174573
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)132123
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129347
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)178977
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 1
914 1 _ |y 2023
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21