001020020 001__ 1020020
001020020 005__ 20250117222513.0
001020020 0247_ $$2doi$$a10.7554/eLife.88376.1
001020020 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-05835
001020020 037__ $$aFZJ-2023-05835
001020020 041__ $$aEnglish
001020020 1001_ $$0P:(DE-HGF)0$$aLu, Han$$b0$$eCorresponding author
001020020 245__ $$aInterplay between homeostatic synaptic scaling and homeostatic structural plasticity maintains the robust firing rate of neural networks
001020020 260__ $$c2025
001020020 3367_ $$2DRIVER$$aarticle
001020020 3367_ $$2DataCite$$aOutput Types/Journal article
001020020 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1737098415_7619
001020020 3367_ $$2BibTeX$$aARTICLE
001020020 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001020020 3367_ $$00$$2EndNote$$aJournal Article
001020020 520__ $$aCritical network states and neural plasticity are essential for flexible behavior in an ever-changing environment, which allows for efficient information processing and experience-based learning. Synaptic-weight-based Hebbian plasticity and homeostatic synaptic scaling were considered the key players in enabling memory while stabilizing network dynamics. However, spine-number-based structural plasticity is not consistently reported as a homeostatic mechanism, leading to an insufficient under-standing of its functional impact. Here, we combined live-cell microscopy of eGPF-tagged neurons in organotypic entorhinal-hippocampal tissue cultures and computational modeling to study the re-sponse of structural plasticity under activity perturbations and its interplay with homeostatic synaptic scaling. By following individual dendritic segments, we demonstrated that the inhibition of excitatory neurotransmission did not linearly regulate dendritic spine density: Inhibition of AMPA receptors with a low concentration of 2,3-dioxo-6-nitro-7-sulfamoyl-benzo[f]quinoxaline (NBQX, 200 nM) sig-nificantly increased the spine density while complete blockade of AMPA receptors with 50 µM NBQX reduced spine density. Motivated by these results, we established network simulations in which a biphasic structural plasticity rule governs the activity-dependent formation of synapses. We showed that this bi-phasic rule maintained neural activity homeostasis upon stimulation and permitted both synapse formation and synapse loss, depending on the degree of activity deprivation. Homeostatic synaptic scaling affected the recurrent connectivity, modulated the network activity, and influenced the outcome of structural plasticity. It reduced stimulation-triggered homeostatic synapse loss by downscaling synaptic weights; meanwhile, it rescued silencing-induced synapse degeneration by am-plifying recurrent inputs via upscaling to reactivate silent neurons. Their interplay explains divergent results obtained in varied experimental settings. In summary, calcium-based synaptic scaling and homeostatic structural plasticity rules compete and compensate one another other to achieve an eco-nomical and robust control of firing rate homeostasis.
001020020 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001020020 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x1
001020020 536__ $$0G:(GEPRIS)491111487$$aDFG project G:(GEPRIS)491111487 - Open-Access-Publikationskosten / 2025 - 2027 / Forschungszentrum Jülich (OAPKFZJ) (491111487)$$c491111487$$x2
001020020 536__ $$0G:(DE-Juel1)Helmholtz-SLNS$$aSLNS - SimLab Neuroscience (Helmholtz-SLNS)$$cHelmholtz-SLNS$$x3
001020020 536__ $$0G:(EU-Grant)800858$$aICEI - Interactive Computing E-Infrastructure for the Human Brain Project (800858)$$c800858$$fH2020-SGA-INFRA-FETFLAG-HBP$$x4
001020020 588__ $$aDataset connected to CrossRef
001020020 7001_ $$0P:(DE-Juel1)165859$$aDiaz, Sandra$$b1
001020020 7001_ $$00000-0003-3147-4949$$aLenz, Maximilian$$b2
001020020 7001_ $$00000-0002-2646-3770$$aVlachos, Andreas$$b3$$eCorresponding author
001020020 773__ $$a10.7554/eLife.88376.1$$pRP88376$$teLife$$v12$$y2025
001020020 8564_ $$uhttps://doi.org/10.7554/eLife.88376.1
001020020 8564_ $$uhttps://juser.fz-juelich.de/record/1020020/files/88376-v1.pdf$$yOpenAccess
001020020 909CO $$ooai:juser.fz-juelich.de:1020020$$pVDB$$pdriver$$popen_access$$pdnbdelivery$$pec_fundedresources$$popenaire
001020020 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165859$$aForschungszentrum Jülich$$b1$$kFZJ
001020020 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001020020 9141_ $$y2025
001020020 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001020020 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001020020 920__ $$lyes
001020020 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001020020 980__ $$ajournal
001020020 980__ $$aVDB
001020020 980__ $$aUNRESTRICTED
001020020 980__ $$aI:(DE-Juel1)JSC-20090406
001020020 9801_ $$aFullTexts