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Abstract

Critical network states and neural plasticity are essential for flexible behavior in an ever-
changing environment, which allows for efficient information processing and experience-
based learning. Synaptic-weight-based Hebbian plasticity and homeostatic synaptic scaling
were considered the key players in enabling memory while stabilizing network dynamics.
However, spine-number-based structural plasticity is not consistently reported as a
homeostatic mechanism, leading to an insufficient under-standing of its functional impact.
Here, we combined live-cell microscopy of eGPF-tagged neurons in organotypic entorhinal-
hippocampal tissue cultures and computational modeling to study the re-sponse of structural
plasticity under activity perturbations and its interplay with homeostatic synaptic scaling. By
following individual dendritic segments, we demonstrated that the inhibition of excitatory
neurotransmission did not linearly regulate dendritic spine density: Inhibition of AMPA
receptors with a low concentration of 2,3-dioxo-6-nitro-7-sulfamoyl-benzo[f]quinoxaline
(NBQX, 200 nM) sig-nificantly increased the spine density while complete blockade of AMPA
receptors with 50 uM NBQX reduced spine density. Motivated by these results, we established
network simulations in which a biphasic structural plasticity rule governs the activity-
dependent formation of synapses. We showed that this bi-phasic rule maintained neural
activity homeostasis upon stimulation and permitted both synapse formation and synapse
loss, depending on the degree of activity deprivation. Homeostatic synaptic scaling affected
the recurrent connectivity, modulated the network activity, and influenced the outcome of
structural plasticity. It reduced stimulation-triggered homeostatic synapse loss by
downscaling synaptic weights; meanwhile, it rescued silencing-induced synapse degeneration
by am-plifying recurrent inputs via upscaling to reactivate silent neurons. Their interplay
explains divergent results obtained in varied experimental settings. In summary, calcium-
based synaptic scaling and homeostatic structural plasticity rules compete and compensate
one another other to achieve an eco-nomical and robust control of firing rate homeostasis.
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This manuscript makes a valuable contribution to understanding the entanglement
of homeostatic structural plasticity and synaptic scaling, yet only homeostasis after
activity deprivation is studied in depth. The experimental and computational
methods are solid but overall incomplete as the link between them remains
qualitative. The conclusions drawn from the results are rather vague and their
generality or relevance for other research fields is not made clear.

Significance Statement

e This work combined in vitro experiments and computer simulations to study the interplay
between homeostatic structural plasticity and synaptic scaling.

e We observed a non-linear relationship between spine numbers and neural activity, where
partial or complete inhibition of synaptic transmissions led to increased and reduced spine
density, respec-tively.

e Partial inhibition increased spine sizes regardless of their initial sizes, while complete
inhibition selectively increased relatively large spines.

¢ A bi-phasic spine-number-based structural plasticity rule reconciled the divergent experimental
results in activity-dependent spine density changes.

e We used a framework of engineering systems and complex systems to analyze the roles of the
bi-phasic structural plasticity in maintaining the robustness of the neural network — firing rate
homeostasis.

e The bi-phasic rule partially uses the negative feedback strategy and serves as a redundant and
heterogeneous mechanism to the synaptic-weight-based homeostatic synaptic scaling rule.

e Both rules are based on intracellular calcium concentration which is the integral signal of
neural activity. We, therefore, proposed a critical role for integral feedback control in firing rate
home-ostasis.

Introduction

To survive in a dynamic world, animals must properly respond to novel and familiar
environmental cues. The former demands their brain networks to sustain activity at a critical

state, where information can be transmitted into action potentials and conveyed as neural
avalanches.! 222 The latter describes experience-based learning such that subtle memory cues
could trigger excessive responses in the corresponding pathway during recall. These two

mechanisms are reflected by firing rate homeostasis and associative learning, respectively.

Robust firing rate homeostasis has been reported in rodents’ visual cortices and hippocampi in

. o _egs . . P 7_9 @ .
vivo, where neural activities get restored at either individual neuron”.% 2% or population

level'9%: 11 within a few days after perturbation. Long before that, however, the idea of firing
rate homeostasis has been hover-ing in theories since long-term synaptic potentiation (LTP) was

observed.'2Z LTP is a positive-feedback modification of synaptic transmission among excitatory
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neurons (“neurons that fire together, wire to-gether”.?:j.’E’)..), which was postulated by Donald
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memory traces as increased synaptic weights but risk pulling the network dynamics from
1503

equilibrium status into overexcitation or silence..>.=. Restoring the neural network to its
equilibrium dynamics without erasing memories in this condition is therefore critical and attests
162-210

to the robustness of the complex system—the human brain network...2=27%.%

Robustness is a ubiquitous concept in many complex systems or engineering systems, meaning
that when external perturbations forcefully change its dynamics, the system adapts to return to its
original attractor or moves to a new attractor state that maintains its functions Several
features have been proven essential for maintaining robustness, including negative feedback
control, redundancy, and heterogeneity. Homeostatic synaptic scaling falls perfectly into the

negative feedback strategy.g%.‘._.—f').. Upon long-term manipulation of neural activity,.g.z...'.—.—'.',.. membrane

potential,g%@.. or calcium concentration, 2% neurons proportionally down-or upscale their
incoming synaptic weights in a compensatory way. Redundancy and heterogeneity encompass
various mechanisms that achieve the same goal in case one or two fail. While redundancy and
heterogeneity have been identified in biological systems in the form of genetic buffering and

. . 7 7 7, . . . s P
convergent molecular circuits,2%2> 2272 222 their representation in activity-dependent plasticity

the Bienenstock- Cooper-Munro (BCM) rule=”.-=. or STDP rule, 2.2 7202 or induction of
heterosynaptic LTD via synaptic tagging and captureig.@. are in agreement with the idea of
stabilizing firing rate. Inhibitory plasticity also contributes to re-establishing a balance between
excitation and inhibition  All these mechanisms support the notion that in the functional
plasticity regime, there are local or global mechanisms that are redundant and heterogeneous to

the homeostatic synaptic scaling.

However, whether such redundancy is also reflected in the structural substrate of functional
trans-mission remains elusive. Structural plasticity includes changes in sizes or numbers of
dendritic spines and axonal boutons, numbers of synapses, and network connectivity, which are
all pivotal to functional transmission and memory capacity.g.@@. Meanwhile, previous work on
activity-dependent changes in spine density showed both homeostatic and non-homeostatic
regulations upon activity perturbation..?’.?.@. In the present study, we used whole-cell patch-clamp
recordings and time-lapse imaging experiments, which in-formed the computational
implementation of a bi-phasic activity-dependent (i.e., calcium-based) rule for synapse-number-
based structural plasticity that reconciles various alterations of spine numbers. Then, with
computer simulations, we showed that this structural plasticity rule is competitive, redundant,
and compensatory to the synaptic-weight-based homeostatic synaptic scaling rule, in different
time scales and magnitude scenarios. We demonstrated that calcium concentration-based integral
feedback control, in the formats of structural plasticity and synaptic scaling, enables robust

. P 7 7 7
adaption of network activity.2!.%2> 3852, 3952,

Results

Integral feedback mechanisms in

regulating firing rate homeostasis

Neural network dynamics are determined by the product of external inputs and intrinsic
connectiv-ity. External stimulation and inhibition increase or decrease neural activity
deterministically in a static network. Hebbian plasticity amplifies network activity by potentiating
synaptic weights via positive feedback. In contrast, homeostatic synaptic scaling and homeostatic
structural plasticity reduce input-triggered responses by modifying synaptic weights or numbers
in the presence or absence of Hebbian plasticity (Fig. 1A ). Mechanism-wise, homeostatic
synaptic scaling and homeostatic structural plasticity seem redundant in regulating network
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::-..,‘ eLl fe dynamics. However, compared to homeostatic synaptic scaling, ex-perimental spine density

s analyses yielded ambiguous, even contradicting results, especially upon chronic activity
inconclu-sive results. Nevertheless, in a complex biological neural network where homeostatic
synaptic scaling is constantly subject to and meanwhile modulates neural activity, changes in
synaptic weights are expected to interact with the activity-dependent structural remodeling of
networks. From the perspective of a com-plex system, we proposed to view synaptic scaling and
spine-number-based structural plasticity as two integral feedback mechanisms (Fig. 1C %), which
use intracellular calcium concentration (C(t)) to inform their regulatory behaviors. We
approximated their interactions systematically using computer simula-tions. Specifically for
structural plasticity, different working models are available where neural activity either
monotonically or non-monotonically governs the neurites’ outgrowth and retraction, and hence
synapse formation and loss. Additional information is therefore needed to inform the model
selection.

Heterogeneous modification of spine sizes

and numbers upon chronic synaptic inhibition

To examine whether spine density is linearly dependent on neural activity or not, we used 200 nM
and 50 uM NBQX (2,3-dioxo-6-nitro-7-sulfamoyl-benzo[f]quinoxaline), a competitive AMPA
receptor antago-nist, and studied CA1 pyramidal neurons of entorhinal-hippocampal tissue
cultures (Fig. 2A2 ). Whole-cell patch-clamp recording of AMPA receptor-mediated spontaneous
excitatory postsynaptic currents (SEP-SCs) demonstrated a significant reduction in mean sEPSC
amplitude and frequency with 200 nM NBQX and a near-to-complete blockade of excitatory
synaptic transmission with 50 uM NBQX (Fig. 2Bi-Bii @). Then the two concentrations were
applied to Thy1-eGFP cultures for three days, and individual dendritic segments were followed
before and after chronic activity inhibition with the help of time-lapse imaging (Fig. 2C(®).
Analysis showed that 200 nM NBQX treatment increased spine density (p = 0.003, Wilcoxon test),
while 50 uM NBQX treatment reduced spine density (p = 0.008, Wilcoxon test), in comparison to
their baseline densities (Fig. 2D ). No significant changes were observed in the control cultures
(p = 0.06, Wilcoxon test). Our results indicated a non-linear activity dependency for spine
numbers.

We also tracked the size of individual spines before and after the treatment. The spine sizes in all
three groups followed a long tail distribution in which the majority were small (Supplementary
Fig. 1A) while their alterations after the three-day treatment (A spine size) displayed a normal
distribution (Supplemen-tary Fig. 1B 3). Population-wise (Fig. 2E ™), we observed a significant
increase and a significant reduction in spine sizes, respectively, after 200 nM (p < 0.001, Wilcoxon
test; 99.9%CI = [9.09, 25.8], LLM) and 50 uM NBQX treatment (p < 0.001, Wilcoxon test; 99.9%CI =
[9.09, 25.8], LLM). However, we noticed that after normalizing the size alterations by their initial
sizes, all three groups showed an increased ten-dency (Fig. 2E 2 inset and Supplementary Fig. 1C),
which we suspected was inflated by the enlargement of large numbers of small spines. Therefore,
we sorted the spine size alterations based on their initial sizes in Fig. 2F @ . Indeed, control
segments (black curve) showed a natural fluctuation of spine sizes that small spines tend to grow
over the three-day period while large spines shrink. When partial inhibition via 200 nM NBQX
(orange curve) was applied, the overall dynamics shifted toward increase regardless of their initial
sizes. However, complete inhibition via 50 uM NBQX (light blue curve) only tended to increase the
sizes of a small number of large spines, but counterbalanced the natural increase of small spines
and caused shrinkage of middle-sized spines. These data confirmed a general homeostatic adjust-
ment of spine sizes upon partial and complete inhibition. However, their initial sizes seem to
mediate the fate of individual spines in response to complete inhibition.
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Fig. 1

Integral feedback mechanisms in regulating firing rate homeostasis.

(Ai) Neural net-work activity is determined by external inputs in a static network. (Aii) Hebbian plasticity amplifies the network responses to external
inputs via a positive feedback mechanism. (Aiii) Homeostatic plasticity restores setpoint activity via a negative feedback mechanism, which is key to
firing rate homeostasis. (Bi) Hebbian functional plasticity strengthens recurrent connectivity by potentiating the weights of certain groups of synapses.
(Bii) Homeostatic synaptic scaling proportionally down-scale or up-scale all synaptic strengths upon chronic excitation and inhibition. (Biii) Homeostatic
structural plasticity presents homeo-static spine loss upon chronic excitation, while divergent changes in spine density upon chronic inhibition have
been observed. (C) Synaptic scaling and structural plasticity use intracellular calcium concentration ([Ca2+]i, C(t)) to track neural activity (AP, action
potential, S(t)). Calcium concentration updates each time with calcium influx (8c,) upon the arrival of an action potential and decays with a time constant
Tc,. Homeostatic synaptic scaling is implemented as a weight-dependent rule which updates the synaptic weight w(t) with a scaling factor p. The
discrepancy from the setpoint € determines the direction of weight scaling. Structural plasticity is also calcium-dependent and governs the growth and
retraction of axonal boutons and dendritic spines by the setpoint value. Two examples of the structural plasticity rule are presented here. They are either
linearly or non-linearly dependent on the intracellular calcium concentration.
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Fig. 2: Legend will continue.

Fig. 2

Heterogeneous modification of spine numbers and sizes upon three-day synaptic inhibition via NBQX.

(A) Example CA1 pyramidal neuron recorded in the entorhinal-hippocampal tissue culture for probing the effects of different NBQX concentrations. Scale
bar: 500 ym. (Bi-Bii) Frequency and averaged amplitudes of sEPSC events for each recorded neuron in three groups (N = 18 for the control group, N =18
for the 200 nM NBQX-treated group, N = 12 for the 50 yM NBQX-treated group). (C) Example Thy1-eGPF culture and the example dendritic segments
from the radiatum layer (rad.) before and after three-day treatment. Scale bar: 200 ym and 5 ym. (D) Spine density at baseline and after the three-day
treatment. All values were normalized by the corresponding baseline values. Lines with light shades are raw data (solid and dashed lines represent
increased or reduced spine density, respectively). Dark-shaded lines with error bars are each group’s means and the standard error of the means
(s.e.m.s). (N =19 for the control group, N = 24 for the 200 nM-treated group, N = 33 for the 50 yM-treated group) (E) Cumulative distribution function of
spine sizes before and after the three-day treatment (N = 489 for the control group, N = 736 for the 200 nM-treated group, N = 675 for 50 yM-treated
group). Inset shows the corresponding averages of normalized spine sizes. (F) Normalized changes in spine sizes grouped by their initial spine sizes.
Values on the x-axis are the upper limits of each group. (G) Each segment’s average change in spine sizes against its initial spine density. The marker
size labels the net change in spine density over a three-day course. (H) Each segment’s average changes in spine sizes against its change in spine
density. (I) The table summarises the experimental data, while the graph displays the extrapolated relationship between neural activity and spine

densities or sizes.
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To provide insights into the interaction between spine density and size, which may hint at the rela-
tionship between structural plasticity and synaptic scaling, we further quantified the average
changes of all spine sizes for individual dendritic segments ( A spine size). We observed a positive

7 eLife

correlation be-tween the average changes in spine sizes and their baseline spine densities under
200 nM NBQX treatment (Fig. 2G (2, r(24) = 0.65, p = 0.00064, Pearson’s correlation; Supplementary
Fig. 2A) but not in control or 50 uM NBQX treated groups. When plotting the average changes of
spine sizes against the corre-sponding alterations of spine densities for all dendritic segments, we
found that weak inhibition (200 nM NBQX) triggered both spine density increase and spine size
enlargement in most of the segments (see orange dots clustered in the upper right quadrant in Fig.
2H®). These data implied a potentially critical role for segments with dense spines and a
synergistic effect between structural and functional plasticity upon weak inhibition. In the case of
50 uM NBQX treatment, however, the size-density data points were widely scattered in four
quadrants (light blue dots in Fig. 2H (@). This result supported our observation of heterogeneous
modification of spine sizes upon strong inhibition. In summary, our imaging results suggested a
non-linear relationship between network activity and spine density or spine sizes, which may
result from the complex interaction between synaptic scaling and structural plasticity upon weak
and strong activity deprivation (Fig. 2I1®@).

Stabilizing and characterizing a biphasic structural plasticity rule

Our results regarding spine density alterations demonstrated a non-linear (biphasic) relationship
between neural activity and spine numbers, where partial inhibition resulted in an increase in
spine numbers and complete inhibition resulted in reduced spine numbers. Because changes in
spine numbers or density are functionally correlated to synapse formation, loss, and rewiring, we
decided to implement structural plasticity rules in point neurons to study synaptic rewiring in a
large homogeneous spiking neuron network without considering the heterogeneous neural
morphology (Fig. 3A®). The vanilla linear growth rule was implemented for comparison reasons
(Fig. 3Bi @). We adopted a Gaussian-shaped growth rule of synaptic element numbers with two
setpoints to represent the observed biphasic dependency for simplification. Particularly, by setting
the first setpoint at n = 0 or n > 0, we achieved two slightly different variants of the Gaussian rule
(Fig. 3Bii-Biii ). We then grew three neural networks where the synapses among excitatory
neurons were respectively subject to the three mentioned rules (Fig. 1C ). As reported

sparsely connected network (10% of connection probability, equivalent to 1 000 excitatory
synapses for each neuron) with an average firing rate around the target rate, i.e., the setpoint
value € = 7.9 Hz (Fig. 1Di @). The Gaussian rule with a zero setpoint (1 = 0) also developed the
network to an equilibrium state similar to the linear rule (Fig. 1Dii @2). However, the Gaussian rule
with two non-zero setpoints (7 = 0.7 and € = 7.9) did not permit proper network development (Fig.
1Diii @).

A closer scrutinization of the neural firing rates and network connectivity at a late growth stage
showed that half of the excitatory neurons were silent (Fig. 4A %), and all excitatory neurons
were connected inhomogeneously where almost half of them were isolated (Fig. 4Bi-Bii (2).
Correlating the firing rates and synapse numbers of individual excitatory neurons confirmed that
the silent neurons were isolated while neurons that reached the target rate possessed a regular
synapse number close to that observed in the linear rule (1 000 synapses, Fig. 4C(%). These
observations are consistent with the properties of the Gaussian growth rules, indicating that one
setpoint is stable (¢ = 7.9), while the other one is either stable if the synapse numbers remain
unchanged after silencing (1 = 0) or unstable if disconnection occurs after silencing (7 > 0). We
thus refer to the Gaussian rule with two stable setpoints as stable Gaussian rule and the other
Gaussian as biphasic Gaussian rule in the manuscript.
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Fig. 3

Growing a neural network with three distinct structural plasticity rules.

(A) The point neuron model was used to study structural plasticity, where dendritic morphology is reduced. Dendritic spines are represented by pink
sticks on the soma; axonal boutons are represented by empty or solid half circles. An empty circle with a dashed line labels an axon during retraction.
Calcium concentration is linearly correlated with neural firing rate in our implementation, so neural activity would be used in the rest of the manuscript
to reflect the hidden calcium dynamics. (Bi-Biii) Three activity-dependent growth rules of structural plasticity regulate the change of synaptic element
numbers. (Bi) Linear rule with one setpoint (€ = 7.9). (Bii) Gaussian rule with two setpoints that one is zero (¢ = 7.9 and n = 0). (Biii) Gaussian rule with two
non-zero setpoints (¢ = 7.9 and n = 0.7). Three shades indicate 100%, 50%, or 10% of the original growth rate (v). Positive and negative values indicate,
respectively, the speed of outgrowth and retraction of synaptic elements. (C) The neural network architecture of the Brunel network. 10 000 excitatory
(blue) and 2 500 inhibitory neurons (red) are stimulated by external Poissonian inputs. All I-[, I-E, and E-I synapses are hard-wired with 10% probability.
E-E synapses are subject to structural plasticity rules. (Di-Diii) Temporal dynamics of neural activity and network connectivity () during growth,
respectively, guided by three rules. If not otherwise stated, the curve and the shaded area in activity plots represent the mean and standard deviation of
the neural activity for the inhibitory population (I) and excitatory population (E). The network developed to an equilibrium state (I = 10%) in Di and Dii
but not in Diii. The firing rates distribution and network connectivity matrices of the chosen time points, indicated by solid triangles, are included in
Supplementary Figure 3 for Di-Dii, and in Figure 4 for Diii.
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Silent neurons remained isolated in the network regulated by the biphasic Gaussian rule.

(A) Histogram of firing rates of excitatory and inhibitory neurons sampled at the time point indicated in Figure 3Diii (2. Almost half excitatory
population was silent. The blue vertical line labels the mean firing rate of non-silent neurons. The orange dashed vertical line indicates the target firing
rate (¢ = 7.9 Hz). (Bi-Bii) Network connectivity matrix and the distribution of synapse numbers that individual excitatory neurons have. (C) Correlation
heatmap between neural activity and synapse number of individual excitatory neurons. Neurons that were silent did not form synapses either. Neurons
that fired around the target rate formed around 1 000 synapses from other active excitatory neurons. (D) Network architecture when facilitating current
(Ffacilitating) Was injected to boost the network development. (E) Temporal dynamics of neural activity and network connectivity when damping
facilitating current were injected. The small inset shows the firing rate distributions of both excitatory and inhibitory neurons at a chosen time point
(solid triangle). The facilitating current started at 750 pA and decayed linearly to zero at 4 000 s. (F) Different starting values of facilitating currents ended
with different network connectivities. We used 750 pA throughout the manuscript.
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Inspired by the observation that neural excitability facilitates circuit developmen 230 we
increased the excitability of excitatory neurons during the growth period by injecting facilitating
current (gycjitating) t0 lift the average membrane potential closer to the threshold potential (Fig.
4D (). With the help of facilitating current, the neural network with biphasic Gaussian rule grew
to the equilibrium state and retained the dynamics after the facilitating current decayed to zero
(Fig. 4E ). Given that different inten-sities of facilitating current resulted in different equilibrium
connectivity (Fig. 4F @), we used the intensity that achieved the same network connectivity (10%)
and firing dynamics as the linear rule for further exploration.

7 eLife

Biphasic Gaussian rule reconciles divergent

structural changes triggered by activity perturbation

As a proof-of-concept experiment, we systematically tuned the input strength to a subgroup of
excitatory neurons (10% of the total excitatory population) from 0% to 200% fold of the original
intensity (FOI, Fig. 5A(2) after the growth period to mimic input deprivation and stimulation.
Example traces in Fig. 5Bi-Biii 2,C showed the protocols, neural activity, and network connectivity
when the network was subject to the biphasic Gaussian rule. Intuitively, stimulation increased the
neural activity of the subpopulation (S) (left panel in Bii) and triggered a reduction in synaptic
connectivity among the stimulated neurons (S-S) and between the stimulated and non-stimulated
excitatory neurons (S-E; left panel in Biii). The connectivity matrices in panel C display the final
network connectivity. The homeostatic disconnection eventually restored the activity level of the
stimulated neurons to the setpoint value (orange line in Bii). In contrast, the magnitude of activity
deprivation determined whether the connectivity underwent homeostatic increase or silencing-
induced degeneration. Both weak deprivation and silencing decreased the neural activity of the
subpopulation (middle and right panels in Bii), while the network only managed to restore its
network activity to the setpoint value by homeostatically increasing the network connectivity
under weak deprivation. Silencing protocol induced disconnection of the silent neurons (right
panels in Biii and C).

Systematic analysis of incoming synapse numbers confirmed the biphasic dependency of the
biphasic Gaussian rule (dark yellow curve in Fig. 5D (@) and the monotonic property of the linear
rule (green curve). The stable Gaussian rule, which has two stable setpoints (n = 0), however,
showed an intermediate tendency that external stimulation and weak deprivation triggered a
homeostatic reduction or increase in synapse numbers, whereas strong deprivation left the
network silent and intact (light yellow curve). Among the three rules, the biphasic Gaussian
captured the homeostatic properties of the linear rule and allowed for silencing-induced spine
loss, as reported in our experiments and many other previous experiments.* 483

Lesion-or denervation-induced plasticity is of considerable interest in activity-dependent
structural plasticity and clinical-relevant scenarios. 22221 The biphasic Gaussian rule thus
provides a model to study denervation-induced degeneration and subsequent regeneration.
Nevertheless, in the temporal evolution of network connectivity, we noticed a small increment
right after the silencing, which seemed biologically unrealistic. This might have resulted from the
fast growth rate or the residual effects of previous firing activity on calcium concentration. In Fig.
5E 2, we showed that two neurons receiving the same external inputs presented identical
membrane potential dynamics and spike trains, while the difference in calcium time constant (zc,)
led to a gap in accumulated calcium concentration. Because the synaptic element number depends
on the calcium concentration, which reflects the firing rate, the shorter time constant (o5 =1,
orange curve in 5F) carried less activity history and resulted in a smoother reduction of synaptic
connectivity. Similar effects were achieved by using a slower growth rate (10% of the original rate)
for structural plasticity (light blue dashed curve, 5F). Here we showed with computer simulations
that the time scales of calcium dynamics and structural plasticity interfered. In reality, the decay
time constant of calcium concentration is difficult to estimate due to multiple sources of calcium
signals across time and space, while structural plasticity is widely accepted as a rather slow
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Divergent regulation of network connectivity upon stimulation and deprivation by three structural plasticity rules.

(A) A subpopulation (10%) of excitatory neurons (S) was subject to activity perturbation. All E-E, S-S, and E-S synapses are subject to the biphasic

Gaussian rule. (Bi) Activity perturbation protocol. Three different folds of the original intensity (FOI) of the Poisson generator were used as examples to
represent stimulation (110% FOI), weak deprivation (95% FOI), and silencing (0% FOI). (Bii) Temporal dynamics of neural activity of the subpopulation (S),
the rest of the excitatory neurons (E), and inhibitory neurons (I) under corresponding protocols. (Biii) Temporal evolution of the overall network
connectivity and connectivity of different subgroups under corresponding protocols. Synaptic connection probability from E to S (E-S) is identical to that
from S to E (S-E) here so only S-E traces are shown. (C) Network connectivity matrices at the end of three protocols. (D) Average incoming synapse
numbers of S neurons under different FOIs. Empty green circles are data from networks under extreme stimulation or inhibition, where neural activity
and network connectivity dynamics were unstable. (E) Examples of two neurons that received the same external inputs but have different calcium decay
time constants (tc,). The upper panel shows the membrane potential; the middle panel shows the spike trains of the two neurons; the lower panel
displays the integrated calcium concentration over time. (F) Connectivity traces of subnetwork upon silencing under three different conditions.
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process occurring within hours to days. Therefore, we decided to use the slow growth rate and the
original calcium time constant to further study the activity-dependent structural plasticity. The
fast growth rate was only used in Fig. 6D-F(2 to accelerate spine turnover in order to save
simulation time when we need to display the dynamics over a longer period.

7 eLife

Activity perturbation and recurrent connectivity

shape the evolution of spine number

Although silencing-induced degeneration captured the feature of deprivation-induced spine loss, it
was rarely observed that input deprivation led to complete neural isolation. Rather, spine
recovery has been observed after spine loss 442, 462, 482 Early computer simulations with the

Gaussian rule also reported such “physiological” recovery phenomena by using distinct rules for

bouton and spine growth and applied the same silencing protocol. The network grew properly to
the equilibrium state with altered rules but failed to recover synapse numbers (Fig. 6B ), only
asymmetric connectivity was observed in the input and output synapses of the deprived
subpopulation (Fig. 6C2). However, a closer look at their network structure revealed the critical
role of distance-dependent connectivity patterns in the early work. When distance-dependent
connectivity was applied, neurons close to the border of the inhibited area would still receive
active inputs from the non-inhibited neighbors. Therefore, these neurons were less deprived than
neurons close to the center, even though their external inputs were equally removed.

Accordingly, we were inspired to examine the recurrent inputs’ role in connectivity recovery. We
applied the silencing protocol and delivered external stimulation to the deprived subnetwork. In
Fig. 6E@ (Protocol 1), the network in the left panel was simulated at a ten times faster speed than
in the middle panels, such that the recurrent connectivity at the timing of stimulation was much
lower in the left than in the middle panel. As stated, network dynamics are determined by the
product of external inputs and internal connectivity, such that the triggered activity in the
deprived subnetwork remained silent in the left panel but was reactivated in the middle panel,
despite the same stimulation strength. The connectivity trace in Fig. 6F also confirmed that the
residual recurrent connectivity amplified the external stimulation and initiated synapse
regeneration and rewiring. However, if the external stimulation were too high (protocol 2), the
over-amplification effects of the recurrent connectivity would push the system from silencing-
induced degeneration to over-excitation-induced homeostatic degeneration (Fig. 6E,F (2, right
panels). Our simulation results suggested that using recurrent connectivity, external stimulation
could modulate neural activity and shape synapse number and network connectivity.

Synaptic scaling is redundant and complementary to biphasic

Gaussian rule in maintaining firing rate homeostasis

Following the idea of activity manipulation, homeostatic synaptic scaling could, in theory, sculpt
recur-rent connectivity by continuously adjusting functional synaptic transmission during input
deprivation. Particularly, homeostatic strengthening of excitatory synapses could increase neural
activity and thus may push the activity-dependent structural plasticity from silencing-induced
synapse loss to rewiring, as in the case of external stimulation.

To examine this hypothesis, we implemented a monotonic rule for calcium-based synaptic scaling.
We grew the network with the biphasic Gaussian structural rule to the equilibrium state and
turned on the calcium-based synaptic scaling at the same time when the silencing protocol was
initiated (Fig. 7A®). To specify the contribution of structural plasticity and synaptic scaling, two
types of connectivity were analyzed: (1) structural connectivity (Is;y,c), which was calculated by
synapse numbers only; and (2) effective connectivity (Tgste. ), Which was calculated by multiplying
synapse numbers with the weight of individual synapses. In the scenario where synaptic scaling
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Activity perturbation and recurrent connectivity shaped the evolution of network connectivity.

(A) In the default network, we used the same growth rule for axonal boutons (A, light brown curve) and dendritic spines (D, pink curve). Alternatively,
different n values could be used for axonal and dendritic elements. A silencing protocol was applied. (B) Neural activity of S, E, and I neurons under two
conditions. (C) The network connectivity matrices at the end of the silencing protocol under two conditions. (D) Protocols used to examine the effects of
recurrent connectivity and external stimulation. (E-F) Time courses of neural activity and connectivity upon silencing and external stimulation. Under

Protocol 1, the growth rate in the left panel was ten times faster than that in the middle panel. In the right panel, external stimulation intensity was
doubled.
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D eLl fe was absent, the synaptic weights were uniform. Thus, the two types of connectivity were identical

L (Fig. 7C 2, left panels). When allowing for weak scaling (Fig. 7B,C &, p = 0.01), the effective
connectivity to the deprived neurons (E-S) increased over time, while its impact on firing rate was
negligible and therefore failed to restore synapse numbers and network connectivity. By
increasing the scaling strength in the right panel (p = 0.02), we observed a higher temporal
increment of effective connectivity in E-S synapses which managed to reactive the deprived
neurons from silent status and therefore re-initiated the synapse regeneration and rewiring.

We further plotted the structural connectivity matrix (Fig. 7Di @) and the effective connectivity
ma-trix (Fig. 7Dii @) at the time point ¢,. We showed that although the synapse numbers to the
deprived subgroup decreased, the remaining synapses which received inputs from the non-
deprived neurons gained weight. This observation was confirmed by the temporal evolution of the
mean synaptic weights of two example neurons being deprived (gray) or non-deprived (blue) in
Fig. 7E@. Our simulation results con-firmed that structural plasticity and synaptic scaling react
oppositely but complement each other under extreme activity deprivation. With proper scaling
strength, synaptic scaling could initiate synapse regen-eration by carving recurrent connectivity to
make the maximum use of recurrent inputs from neighbor neurons. On the other hand, the two
rules behaved redundantly under stimulation as expected, that homeostatic disconnection
occurred less when homeostatic synaptic down-scaling took place at the same time
(Supplementary Figure 4).

While proper scaling strength could restore the synapse numbers and neural activity after
silencing, we wondered whether the temporal network dynamics were rescued after synapse
regeneration. We sampled three distinct time points (before silencing, during silencing, and after
regeneration) indicated in Fig. 7B and plotted the raster plots of inhibitory neurons (red, I),
non-deprived excitatory neurons (blue, E), and deprived subpopulation (grey, S). As shown in Fig.
7F @, the neurons’ spiking activity was asynchronous and irregular before deprivation (t;), and
the deprived neurons became silent as expected during silencing (t,). Intriguingly, synaptic scaling
rescued the average firing rate of the deprived neurons, but their activity pattern became highly
synchronized at 5. The highly synchronized activity observed may be attributed to the
potentiation of the residual active synapses, which dominated the inputs afterward. Our results
implied that although the interaction between structural plasticity and synaptic scaling triggered
natural synapse rewiring after silencing or denervation, non-homogeneous connectivity among
the deprived neurons may introduce unwanted dynamics, which could be of interest in the
context of post-traumatic, i.e., injury-triggered-epilepsy.

Hybrid combinations of synaptic scaling and structural

plasticity resolve in-consistent results of spine density

Simulations of point neuron networks allowed us to treat individual synapses homogeneously
regardless of the neural morphology. However, in a neuron with highly compartmentalized
dendritic segments, we may encounter different local combinations of synaptic scaling strengths
and structural plasticity time scales in different neural types, which we hypothesize contribute to
the inconsistent results of observed spine density in experiments (Fig. 8A ).

To address this issue, we combined various structural plasticity growth rates (v) with various
synaptic scaling strengths (p) in different simulations (Fig. 8B (). Example traces in Fig. 8C and
D@ display different time courses of neural activity and structural connectivity of the deprived
subpopulation. It varies from condition to condition. To obtain an overview of the impact of these
parameter combinations on network rewiring, we first summated the discrepancy between the
actual structural connectivity among the subnetwork and its equilibrium state value (10%) over all
time points upon silencing until the end of the simulation in Fig. 8EZ. Cold colors indicate failure
in connectivity restoration, and warm colors suggest success in rewiring or over-reconnection.
Slower growth rates result in slower spine loss upon silencing and are equivalent to more residual
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Homeostatic synaptic scaling sculpted effective connectivity to interfere with struc-tural plasticity.

(A) Protocol of silencing and synaptic scaling enabling. Three different scaling strengths were applied, that p = 0 is for w/o scaling, p = 0.01 and p = 0.02
represent weak and strong scaling, respectively. (B-C) Time courses of network activity and connectivity. sy, iS Synapse-number-based structural
connectivity. Mafrec. denotes the effective connectivity which multiplies synapse numbers and synaptic weights. (Di-Dii) Structural and effective
connectivity matrices of the whole network at t2. (E) Time courses of firing activity and average synaptic weights for an example active excitatory neuron
(blue) and an example silent excitatory neuron (grey). In the weight plot, synapses from other silent neurons (solid grey line, S) and from other active
excitatory neurons (dashed grey line, E) are specified. (E) Raster plots of 100 selected inhibitory neurons (red), excitatory neurons (blue), and silent

neurons (grey) from the network at t1, t2, and t3 labeled in panel B.
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Systematic study of the interaction between synaptic scaling and structural plas-ticity in response to activity silencing.

(A) We hypothesize that different combinations of synaptic scaling (SS) and homeostatic structural plasticity (HSP) may apply to different neuron types
or dendritic segments within the same neuron, or the same type of neuron under different experimental conditions, such that the empirically observed
structural plasticity was highly heterogeneous. (Sample neurons were reconstructed based on CA1 pyramidal neuron and dentate gyrus granule cells
previously recorded in our lab.) (B) Simulation protocol. We systematically changed the values for the growth rate of the HSP rule (v) and the scaling
strength of the SS rule. (C-D) Example traces of neural activity and struc-tural plasticity of the deprived subpopulation (S neurons) under different
parameter combinations. (E-F) Connectivity discrepancies and firing rate discrepancies when different growth rates and scaling strengths were
combined. All the discrepancies were calculated by estimating the area between the actual time course and the equilibrium connection probability (10%)

or the target rate (&) from the time of silencing until the end of the simulation.
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synapses. Clearly, we saw that for slow growth rates, even weak synaptic scaling was sufficient to
rescue the synapse loss; for fast growth rates, the small number of residual synapses would
require much stronger synaptic scaling to achieve a similar level of synapse restoration.

7 eLife

Similarly, we summated the discrepancy between the actual neural activity and the target rate (7.9
Hz) for the deprived population over all time points since silencing to overview the recovery of
neural activity in Fig. 8F (2. We saw that the combinations that failed to restore network
connectivity in Fig. 7E ™ presented negative discrepancies from the target rate (dark blue in Fig.
7F @), suggesting a failure in reactivating the silent neurons. However, it is worth noticing that the
combinations that succeeded in synapse regeneration in Fig. 7E (warm colors) did not
necessarily achieve smooth firing rate restoration. Instead, only those parameters that achieved
mild synapse regeneration (light pinkish colors panel E) presented smooth firing rate restoration.
Fast growth rates of structural plasticity in combination with strong synaptic scaling strength may
lead to very high neural activity (bright colors) which resembles epileptiform activity or result in a
drop in the transient firing rate (dark blue colors). Our systematic study confirmed that calcium-
based synaptic scaling and homeostatic structural plasticity interact with each other at various
time scales and strengths, which may explain the inconsistent experimental results reported..%Z.@.
Our results also suggested that fast-time-scaled homeostatic structural plasticity and strong
synaptic scaling would harm rather than facilitate firing rate homeostasis.

Discussion

The mammalian brain is a complex system consisting of billions of neurons and non-neuron cells

packed into layers, regions, and circuits.>4%. This system is highly robust such that ample external

information does not cause catastrophic forgettingﬁ?.@. nor will input deprivation destroy the

network dynamics.zg.‘ 9% The most extensively observed synaptic-weight-based plasticity in
experiments, Hebbian plasticity and homeostatic synaptic scaling, are regarded as major

components in balancing flexibility and stability..s.ﬁ.'.—.—’."..’ 378 Spine-number-based structural

plasticity, however, remains less understood due to divergent experimental observations.3%.
Nevertheless, structural plasticity, which allows for synapse formation and rewiring, has been
proven to greatly increase the memory capacity of the network=>.-. and maintain its
criticality,.s..?.@f 00, suggesting its discernible role in network function and potential interaction
with functional plasticity. This manuscript elaborated on the synapse-number-based homeostatic
structural plasticity rule and its interaction with the synaptic-weight-based homeostatic synaptic
scaling rule. Our time-lapse-imaging experiments revealed a non-linear dependency between
spine density and neural activity, which informed a biphasic structural plasticity rule for the
systematic study. Computer simulations showed that this biphasic rule and homeostatic synaptic
scaling are redundant and interchangeable upon stimulation. However, they behave oppositely
under silencing: neurons would reduce spine numbers while potentiating the remaining input
synapses. Synaptic scaling may rescue silencing-induced spine loss by restoring neural activity.
Our study reconciled varied experimental results and suggested that the redundancy and
heterogeneity between homeostatic structural plasticity and synaptic scaling achieve robustness

of the complex network of neurons—firing rate homeostasis.

Our work generally extended the scope of structural plasticity by exploring its functional
interaction with synaptic scaling. Structural plasticity is less extensively modeled than functional
plasticity, due to its high-dimensional morphological data. Many morphological changes may
occur in neurons, ranging from dendritic tree branching pattern, axon length, and bouton size, to
spine density and head volume, in response to environment and experience, disease and injury, or
activity perturbation. These changes would influence network connectivity. Therefore, structural
plasticity was frequently proposed to account for functional cortical rearrangement in humans
after injury, amputation, or disease-related cognition decay, but only a few dimensions of neural
morphology were modeled mathematically. Except for a few models about morphological
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development, - most structural plasticity models focus on synapse formation and rewiring,
which was regarded as the key difference from functional plasticity models. However, early
models inherited the synapse-specific view of Hebbian plasticity and modeled the growth and
removal of individual synapses. In these models, less-frequently-used or small-weighted synapses
were pruned from a highly-connected network, or from a network with regular random synapse
growth.” 227200 They are variants of the correlation-based rule and also share Hebbian
plasticity’s properties and limitations. Unlike synapse-specific correlation-based rules, Butz and
van Ooyen proposed a cell-autonomous homeostatic structural plasticity rule that follows a
setpoint firing rate or calcium concentration to create or delete spines and boutons randomly..?gg’)..’

6922 This spine-number-based rule is a structural analog to synaptic scaling in maintaining firing

rate homeostasis. Apart from that, it preserves the correlation-based associative propertiesll..@..’

412,792 and allows for self-organized criticality in developing neural networks,?2%. which is
beyond synaptic scaling and suggests an alternative solution to integrate Hebbian and homeostatic
plasticity. Our work used the same model, but added biological features inspired by experiments

and investigated its function in more biological scenarios where other plasticity rules also apply.

7 eLife

Particularly, we suggested a biphasic activity dependency for homeostatic structural plasticity
with experi-ments. As reported in a recent review, >/ spine density alterations observed in
experiments seem not as homeostatic as synaptic scaling, especially under prolonged input
deprivation. Heterogeneous experimental paradigms may cause inconsistency. Some used lesion
methods, for instance, which could increase the secretion of neuroin-flammatory cytokines
besides input deprivation.f‘.ﬁ.!.—f’.‘f.’ 47,12, 7202 Neuroinflammatory cytokines, such as TNF-a, have
been shown to influence plasticity induction.”2%75% Non-traumatic deprivation methods, such
as dark rearing’%%. or whisker trimming,””%. avoided the confounding effects of injury-related
cytokine release. But the resulting input deprivation was non-homogeneous on the whole
dendritic tree, as apical and basal dendrites usually receive dis-tinct inputs. The same principle

may also apply to pharmacological treatments targeting pre-synaptic partszg@f. or glutamate

uncaging in the neighborhood of a few spines.zg.‘._ff').. However, in studies where drugs
homogeneously treated postsynaptic neurons, changes in spine density remain inconsistent.8%-
85C2 A closer look at their experi-mental systems suggested a potential role of deprivation
strength. Using non-competitive or competitive drugs (with different concentrations), conducting
in vivo or in vitro, and embedding within intact circuits or not all lead to the actual magnitudes of
inhibition on the target neuron varying from experiment to experiment. Our recent work has
demonstrated that depriving synaptic inputs to CAl pyramidal neurons by lesioning entorhinal
cortex or CA3 Schaffer collateral triggered distinct pathway-dependent cellular, structural, and
molecular alterations, where the differentiated dominance of the two pathways may play a role
among other factors.88%. Given that, we hypothesized a biphasic activity-dependent rule to
capture the rich scenarios of spine density alterations, that partial activity suppression shall
promote spine growth while complete inhibition induces spine loss. Indeed, our time-lapse
imaging results confirmed that partial inhibition (200 nM) increased spine density while complete
inhibition (50 uM) reduced spine density, and informed our selection of a biphasic rule.
Nevertheless, our results also suggested complex behaviors of spine size upon inhibition, which

may influence our interpretation of spine density, and we will discuss this later.

In the shape of a Gaussian growth curve, the biphasic structural plasticity model utterly reconciled
the rich scenarios of activity-dependent spine density alterations observed in experiments. As
indicated by the growth rule, the unstable setpoint (7 > 0) leads to varied results in synapse
numbers (equivalent to spine numbers) after activity perturbation: increase, no change, or
reduction. The silencing-induced synapse loss is especially beyond the reach of any linear
(monophasic) rules. As a derived property, this rule enables phase transition by changing neural
activity via manipulating external inputs or intrinsic connectivity. By applying external
stimulation at proper strengths and timings, for instance, it is possible to reverse the silencing-
induced synapse loss into homeostatic rewiring, which may provide insights for using non-

invasive brain stimulation modalities to prevent stroke-induced neural lesions.8’%Z. However, Butz
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and van Ooyen have suggested that the Gaussian rule could achieve a natural transition from
silencing-induced spine loss to rewiring if different rules for axonal boutons and dendritic spines
are used accordingly,.?%@.’ 232, 88L2 with which our simulation in Brunel network disagreed.
Instead, we showed that the “recovery” observed in their study was the combined effect of
distance-dependent connectivity and distinct axonal/dendritic rules. The distance-dependent
connectivity created an inhibition gradient, that the neurons at the border were less inhibited
than those close to the center, and triggered a gradual connectivity recovery with the Gaussian
rule. Our systematic study demonstrated the fundamental effects of neural activity and resulting
calcium concentration in regulating retracting and rewiring, regardless of whether it is driven by

intrinsic connectivity or external inputs.

7 eLife

Homeostatic structural plasticity usually happens in tandem with functional synaptic scaling, such
that they may influence each other’s behavior and make it hard to interpret the observed
experimental results. In our experiments, we observed increased spine size and density after
three days of 200 nM NBQX treatment. Spine size enlargement may raise the chance of small
spines being detected as a spine. Therefore, the spine density increase observed in imaging
experiments is a compound effect of spinogenesis, spine stability, and small spines’ potentiation.
The same confounding effects happen to interpret synaptic scaling results. Turrigiano et al.=%. 2
observed changes in the amplitude but not the frequency of mEPSC after chronic inhibition and
excitation, leading to the conclusion of weight scaling, while subsequent experiments reported
either frequency and/or amplitude changes. The conversion of silent synapses into active ones®2%.
may increase the frequency but reduce the average amplitude of mEPSCs or SEPSCs due to their
small weights. Such changes, by definition, are synapse-number-based structural plasticity, but
may not be reflected by imaging techniques, depending on the laser intensity or exposure time.
Furthermore, we observed divergent size changes of small and large spines upon complete
inhibition. Assuming that shrunk spines may disappear and enlarged big spines will contribute to
increased sEPSC amplitudes, we would again obtain different and even opposite results from
imaging experiments. Therefore, spine numbers and synaptic weights might be the two sides of
the coin named “effective transmission”, and judging it by either side will hide the whole picture
of how structural and functional plasticity interfere. Our systematic study tackled this question
and demonstrated that the interaction between biphasic structural plasticity and monotonic
synaptic scaling achieves an economical and robust control of firing rate homeostasis.

Synaptic scaling originally describes the compensatory changes of synaptic weights in response to
activity perturbation, and several variants of mathematical rules were extrapolated and
implemented. These models used target firing rate,?% ~23Z normalized synaptic weights,gfl..'.—.—'.‘y.. or
regulated presynapses?.?..‘._f"..’ 902 to realize synaptic scaling, except one suggested an integral
feedback control algorithm,f‘??..'.—f'.".. where the authors used a variable with an expo-nential kernel to
represent the internal status of neural spiking activity through time. This variable regulates
synaptic weights accordingly to reach a target value. However, by the time they came up with the
model, it was yet unknown that calcium concentration is the variable that tracks the internal trace
of spiking activity.?is.‘...q‘).. Taking advantage of this model, we implemented the calcium-based
synaptic scaling rule and studied its interaction with the calcium-based structural plasticity model.
Our results first suggested their redundancy. Assuming both rules are monophasic activity-
dependent, they are fully redundant, and the one with a faster time scale would dominate. In
other words, if synaptic scaling acts faster than structural plasticity, we shall easily observe mEPSC
amplitude (or frequency) changes rather than altered spine density. Structural plasticity will join
the game only if the counteracting effects of synaptic scaling are insufficient. However, supposing
structural plasticity follows a biphasic rule while synaptic scaling follows a monotonic rule, they
are only redundant upon stimulation and weak deprivation but bifurcate upon strong inactivity,
as confirmed by our simulation. As a result, we may observe neurons with reduced spine density
and enlarged spine head sizes in our experiments and others.32%: 8352 From an economical point
of view, spine growth and synapse formation are constrained by the availability of proteins; the

transcription and expression of proteins require the energy currency ATPs. Therefore, we
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postulate that it is more effective for neurons to potentiate the existing synapses than searching
for new inputs with new spines. Our sys-tematic study revealed an interdependency between
synaptic scaling and structural plasticity, which may explain divergent results obtained in
different brain regions, neurons, dendritic segments, and experimental settings.

7 eLife

In summary, how homeostatic plasticity sculpts network connectivity, including synaptic weights
and synapse numbers, resembles an integral feedback controller (Supplementary Figure 5), which
is ubiquitous in engineering to achieve robust performance regardless of external perturbation. In
our setting, both structural plasticity and synaptic scaling rules use calcium concentration as the
control signal to drive connectivity kernel modification via negative feedback. Calcium
concentration integrates neural firing rates over time and returns a filtered signal responding to
its activity. Using this filtered signal rather than the raw firing rate to control the connectivity
modification could address the cumulative temporal effect of error in estimating the firing rate.
However, the detailed mechanisms of the two rules are slightly different; the former is closer to a
Proportional, Integral, Differential (PID) controller, while the latter is a PI controller. Except for
the shared integral (I) component, the proportional (P) component for structural plasticity is the
growth rate of the growth rule, 2% as it provides a direct modification on the number of synaptic
elements created or deleted per time unit based on a magnitude relative to the difference between
the expected and real values of calcium concentration. For synaptic scaling, the scaling factor (5)
regulates the proportional effects. Finally, the unique derivative (D) component for structural
plasticity is given by the steepness of the growth curve, which decides how fast or slow the
changes should reach the neuron’s desired activity. The derivative component is critical to ensure
a smooth and robust response to stimuli by avoiding overshooting and abrupt oscillations that are
not biologically realistic, which is especially relevant in the Gaussian case, as the distance to the
target firing rate has different accelerations depending on the position on the firing rate (or
calcium concentration) axis. Therefore, although the exact growth rule shape remains unknown
for homeostatic structural plasticity, we propose that a biphasic curve with changing slope
provides a redundant and heterogeneous structural backup for synaptic scaling to maintain
robust firing rate homeostasis. This view also prepared us to anticipate their interaction with
other plasticity rules where sub-or supra-threshold calcium dynamics are involved.”=.= ~.22..

Materials and Methods

Ethics statement

We used mouse pups postnatal at 3 to 5 days (P3-P5) from C57BL/6] (wild-type) and Thy1-eGFP
mouse lines to prepare entorhinal-hippocampal tissue cultures in the current study. All animals
were kept under a 12 h - 12 h light-dark cycle with food and water provided ad-libitum. One male
and one or two female(s) were kept within the same cage for breeding. All animal experiments
were approved by the appropriate animal welfare committee and the animal welfare officer of
Albert-Ludwigs-University Freiburg, Faculty of Medicine under X-21/01B and X-18/02C. All effort
was made to reduce the pain or distress of animals.

Preparation of tissue cultures

cultures were cul-tivated for at least 18 days inside the incubator with a humidified atmosphere
(5% CO,, at 35 °C to reach an equilibrium status. The incubation medium consists of 50% (v/v) 1x
minimum essential media (#21575 - 022, Thermo Fisher, USA), 25% (v/v) 1x basal medium eagle
(#41010 - 026, Thermo Fisher, USA), 25% (v/v) heat-inactivated normal horse serum, 25 mM 1 M
HEPES buffer solution (#15630 - 056, Gibco), 0.15% (w/v) sodium bicarbonate (#25080 - 060,
Gibco), 0.65% (w/v) glucose (#RNBK3082, Sigma), 0.1 mg/ml streptomycin, 100 U/ml penicillin, and
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2 mM glutamax (#35050 - 061, Gibco). The incubation medium was renewed 3 times per week. If
not stated otherwise, the incubation medium applied to the tissue cultures was always pre-
warmed to 35 °C and adjusted around pH = 7.38.

7 eLife

Experimental design

The main objective of the experiments in the current study was to probe whether there is a linear
or non-linear dose-dependent regulation of dendritic spine density such that we can implement a
spine-number-based structural plasticity rule close to biological reality for further systematic
studies. Competitive AMPA receptor antagonist NBQX (2,3-dioxo-6-nitro-7-sulfamoyl-
benzo[flquinoxaline) at different concentrations was bath applied to wild-type cultures while
recording synaptic transmission at CA1 pyramidal neurons. Two magnitudes of inhibition
(“partial” and “complete”) were thus determined by the reduction of amplitudes and frequencies
of spontaneous excitatory postsynaptic currents (SEPSCs). Then the same concentration ladders
were used to treat Thy1-eGFP cultures for three days, where we tracked individual dendritic
segments of CA1 pyramidal neurons before and after the three-day treatment to investigate
whether two different magnitudes of AMPA-receptor inhibition resulted in divergent alterations of
spine densities and spine sizes.

Whole-cell patch-clamp recordings

To probe the effects of NBQX administration at different concentrations on synaptic transmission,
whole-cell patch-clamp recordings were conducted in CA1 pyramidal neurons. Recordings were
performed at 35°C. The bath solution contained (in mM) 126 Nacl, 2.5 KCI, 26 NaHCOg3, 1.25
NaH,POy, 2 CaCl,, 2 MgCl,, and 10 glucose (aCSF) and was continuously oxygenated with carbogen
(5% C0O,/95% O,). Glass patch pipettes had a tip resistance of 4 - 6 M, filled with the internal
solution which contained (in mM) 126 K-gluconate, 10 HEPES, 4 KCl, 4 ATP-Mg, 0.3 GTP - Na,, 10
PO-Creatine, 0.3% (w/v) biocytin. The internal solution was adjusted to pH = 7.25 with KOH and
reached 290 mOsm with sucrose). We patched 6 neurons per culture to record the spontaneous
excitatory postsynaptic currents (SEPSCs) of CA1 pyramidal neurons in the voltage-clamp mode at
a holding potential of -70 mV. Series resistance was monitored before and after each recording
and the neuron data was excluded if the series resistance went above 30 MQ. Each neuron was
recorded for 2 min.

NBQX treatment

NBQX (2,3-dioxo-6-nitro-7-sulfamoyl-benzo[f]quinoxaline) is a competitive antagonist of AMPA
receptors.j.gr?’.?. We chose two concentrations 200 nM and 50 uM and delivered by bath treatment
to achieve a partial or complete inhibition of AMPA receptor currents. Wild-type cultures were
either recorded in normal ACSF or ACSF that contained two different NBQX concentrations. In
time-lapse imaging experiments, Thy1-eGFP cultures were treated with 200 nM and 50 uM by
adding NBQX (Cat. No. 1044, Tocris Bioscience, Germany) in the incubation medium for three days.

Whenever we changed the new medium, fresh NBQX was administrated accordingly.

Tissue fixation and immunohistochemical staining

Recorded cultures were fixed and stained for post hoc inspection. Cultures were fixed by
immersing into 4% (w/v) paraformaldehyde (PFA) in 1x phosphate-buffered saline (PBS, 0.1 M, pH
=7.38) for 1 h and transferred into 1x PBS for storage at 4 °C after being washed in 1x PBS. Before
staining, all fixed cultures were again washed three times with 1x PBS (3 x 10 min) to remove
residual PFA. We incubated the cultures with Streptavidin 488 (1 : 1000, #532354, Invitrogen,
Thermo Fisher, USA) in 1x PBS with 10% (v/v) in normal goat serum and 0.05% (v/v) Triton X-100
at 4 °C overnight. In the next morning, cultures were rinsed with 1x PBS (3 x 10 min) and
incubated with DAPI (1 : 2000) in 1x PBS for 20 min. After another 4 washes with 1x PBS (4 x 10
min), we mounted the cultures on glass slides with DAKO anti-fading mounting medium (#S302380
- 2, Agilent) for confocal microscope imaging.
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% eLife Time-lapse imaging
To inspect whether neural spine densities and spine sizes were altered by the three-day
administration of NBQX, we employed time-lapse imaging to follow the same apical dendritic
segments of CA1 pyramidal neurons before and after treatment. Live cell imaging was performed
at a Zeiss LSM800 microscope with 10x water-immersion (W N-Achroplan 10%/0.3 M27; 420947-
9900-000, Carl Zeiss) and 63x water-immersion objectives (W Plan-Apochromat 63x/1,0 M27;
421480-9900-000, Carl Zeiss). Thy1-eGFP tissue cultures where clear CA1 pyramidal neurons could
be identified were used in this experiment. Dendritic segments from the radiatum layer were
imaged. We imaged individual dendritic segments prior to the NBQX treatment and again after the
three-day treatment. During the imaging session, the membrane insert with 4 cultures was placed
into a 35 mm petri dish filled with 5 ml incubation medium on a platform which was constantly
maintained at 35 °C. We used the same pre-warmed and pH-adjusted incubation medium for
imaging procedures.

Experimental data quantification

Spontaneous excitatory postsynaptic currents (SEPSCs) were analyzed using the automated event

detection tool from the pClamp11 software package as previously described.!%4%Z.

z-stacked fluorescent images of Thy1-eGFP cultures were projected to create a 2D representation
of individual dendritic segments. Image] plugin Spine Density Counter' 2% were used to count
spine numbers and measure segment length, which estimates spine density. For the same
dendritic segments imaged at different time points, special attention was paid to ensure the same
starting and ending points were used. Post hoc visual inspection was applied to ensure the spine
detection results were not strongly biased. Both raw spine density and normalized spine density

by baseline were used in the analysis.

The same z-projected fluorescent images were used to track individual spines for spine size
analysis. To eliminate the bias from drawing and automatic reconstruction, we drew circles
manually around the spine to cut it from the dendrite, the spine size was estimated by measuring
the signal intensity with an arbitrary unit of the drawn circle. The drawing and measurements
were performed with FIJI Image]. Both the raw values and normalized values by baseline spine
size were used in the analysis. Statistical methods were specified in the individual results section.

Statistical analysis

Dunn’s multiple comparison test was applied for statistical analysis regarding the SEPSC events
among the three groups. For spine density analysis, the Wilcoxon test was applied to compare the
values of each segment before and after the three-day treatment. If not otherwise stated, “ns”
means no significant, “*” means p < 0.05, “**” means p < 0.01, “***” means p < 0.001. For spine size
analysis, we first applied the Wilcoxon test for individual spines. To account for data clustering
within each segment, linear mixed model (LMM) with spine_size timing was applied to compare

significance of LLM results was judged by whether the confidence interval (CI) crossed zero.

Neuron model and network model
41

We used the same spiking neuron model and network architecture as described before in:..==. and
in.!1%: 4252 current-based leaky integrated-and-fire point neuron was used for both excitatory
and inhibitory neurons. We build an inhibition-dominated network with 10 000 excitatory
neurons and 2 500 inhibitory neurons 1965 T simplify the scenario, we only grow the
connections within the excitatory population (E-E) with the activity-based structural plasticity rule
(see the Structural plasticity rule section below). Each inhibitory neuron was beforehand hard-
wired randomly to receive synapses from 10% of the excitatory and inhibitory population. All

details and parameters concerning neural and network models can be found in the
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Supplementary Materials. We performed the network simulations with NEST simulator 2.20.2 and
NEST 3.01%7%. and MPI-based parallel computation. All the model parameters and protocols can be
found in Supplementary Tables 1-7.

7 eLife

Structural plasticity rule

We enabled the growth, retraction, and rewiring of synapses among excitatory neurons with the
help of structural plasticity rules. By definition, each excitatory neuron has multiple dendritic
spines and axonal boutons, which are called synaptic elements. Synapses were formed by
randomly matching free compatible synaptic elements. The growth and retraction of synaptic
elements, or in other words, the number of synaptic elements, is governed by a growth rule. Three
structural plasticity rules were explored in the current study: (i) linear growth rule; (ii) Gaussian
growth rule with a zero setpoint and a non-zero setpoint; (iii) Gaussian growth rule with two non-
zero setpoints. All three rules are determined by a function of calcium concentration that reflects
neural activity,

d 1
—C{t) = —
dt () TCa

C(t) + BoaS(1), (1)

where C(t) is the time evolution of calcium concentration. Calcium concentration decays with a
time constant 7, and increases with calcium influx (8¢,) upon the emission of an action potential
S(?) of the postsynaptic neuron. This operation is performed internally by the NEST simulator and
works as a low-pass filtered signal of the spiking activity of the neuron. The growth of synaptic
elements is regulated differently depending on the calcium concentration and the shape of the
growth rule.

Linear growth rule
The linear rule was first introduced in-:-.. and systematically studied in an inhibitory-dominant

The number of synaptic elements (z(t)) is linearly dependent on the calcium concentration,

ditz(t) =v[l- %C(t)], (2)

where v is the growth rate, and ¢ is the target level of calcium concentration. Since calcium
concentration reflects the neural activity loyally, the target level also suggests a setpoint of firing
rate in the context of a certain neural network. As discussed before, when neurons fire below their
target rate, they grow new synaptic elements and form new synapses. On the other hand, they
break existing synapses and retract synaptic elements when they fire above the target rate
(setpoint).

Gaussian growth rule

The Gaussian rule has a more complex dependency on the calcium concentration when neural
5202

C(t)—¢€

4.0 =vze (FF5) _y), (3)

—z
dt
where ¢ = 11?, and ¢= M-’fﬁ In this rule, n and € are two setpoints: € is the stable setpoint as

used in the linear rule. When the neuron fires above ¢, it retracts synaptic elements as in the
linear rule. 1 is another setpoint introduced specifically for the Gaussian rule, determining the
regulation manner when the neuron activity drops below €. When the neuron is firing below € but
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above n, the number of synaptic elements present will undergo homeostatic outgrowth, but when
the neuron is firing below n, neurons will break synapses and retract elements. In the case where
n =0, neurons cease to change synaptic elements when their firing rate drops to zero.

7 eLife

Homeostatic synaptic scaling

In order to achieve homeostatic synaptic scaling, we make use of a new synaptic model in NEST
called scal-ing synapse. In this synapse model, the weight of the synapse is regulated by the
difference between a homeostatic setpoint and the calcium trace of the postsynaptic neuron,

d

() = pu(B)(C(H) —e), (4)

where p is the scaling factor, and ¢ is the same target value as used in the homeostatic structural
plasticity rule.

Activity perturbation

To examine different activity-induced scenarios on neural network connectivity, we performed
systematic activity manipulation to a subnetwork of excitatory neurons (Ng,;, = 1 000), by
changing its Poissonian input from 0% to 200% fold of the original intensity (FOI). All
manipulations were performed at 6 000 s when the network has grown to the equilibrium state
respectively with three structural plasticity rules. For the Gaussian rule with two non-zero
setpoints, we applied damping current injection to the soma to facilitate its growth within the first
4000 s and the network was simulated for another 2 000 s without any facilitating current.

Quantifying firing rate, network
connectivity, and synapse number

Firing rate

Firing rate was calculated by the average spike count over a recording period for individual
neurons. We have long interval (5 s) and short interval (1 s). Short intervals were only used within
the short time window after activity perturbation to reveal its transient dynamics; otherwise, long
intervals were used.

Network connectivity

Two types of connectivity were used in the present study. We used a N x N connectivity matrix (A;)
to represent the recurrent excitatory connections of our network, where columns and rows
correspond to pre-and postsynaptic neurons. For structural connectivity, the entry A; of the
matrix represents the total number of synaptic connections from neuron j to neuron i. For
effective connectivity, we integrated the synapse number with individual weights for each pair of
neurons by summating the total weights. So the entry of the connectivity matrix is the equivalent
number of unit synapses, by dividing the sum with a uniform weight 0.1 mV. To average the mean
connectivity of the whole network or a subnetwork at any given time ¢, corresponding columns
and rows of the connectivity matrix were selected and averaged by I'(t) = -1 3" A;; .Synapse

m

numbers were calculated by the sum of the entry in the structural connectivity matrix.

Synapse number

Input and output synapse numbers, also called indegree and outdegree in another context, were
calculated by summating the input and output synapse numbers of individual excitatory neurons
based on the structural connectivity matrix.
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“elife Quantifying the discrepancies in firing rate

and connectivity from the target values

To apply a systematic comparison among different combinations of the synaptic scaling strengths
and structural plasticity growth rates, we summated the discrepancies in firing rate and
connectivity from the target values for the subpopulation over time as an index of activity and
connectivity recovery. All the discrepancies were calculated by estimating the area between the
actual time course and the equilibrium connection probability (10%) or the target rate (¢) from the
time of silencing until the end of the simulation. The method was explained in detail in
Supplementary Fig. 6.
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Reviewer #1 (Public Review):

This manuscript investigates how homeostatic structural plasticity and synaptic scaling act
under different levels of activity suppression and how this influences the network dynamics
during growth and temporary or persistent silencing. To this end, the authors first use
electrophysiology and chronic imaging to investigate the influence of different levels of
AMPA-receptor blockade. A smaller level leads to reduced activity and up-regulation of
synapse size and number, whereas a complete block abolished activity and decreases spine
numbers. Along this line, the choice to block AMPAR is unconventional and needs to be better
justified as both investigated homeostatic mechanisms are known to he AMPAR dependent.

Second, this finding is transferred into a mathematical rewiring rule, where spine number
shrinks, grows, and shrinks again with increasing activity. It is shown that this rule, in
contrast to other, simpler rules (grow, shrink), can grow healthy networks from scratch only
if additional stimulation is provided. Continuing with these stable networks, the activity of a
sub-network is increased, decreased, or silenced by modulating an external stimulation to the
neurons. Whereas both activity and connectivity return to a stable state for small alteration,
complete silencing leads to disconnection of the silenced network parts. Recovery from this
can be achieved by restoring stimulation before the connectivity has completely decayed or
by adding sufficiently fast synaptic scaling, although both cases can lead to unhealthy activity.
A more systematic assessment of this interaction between scaling and homeostatic rewiring
revealed a minimal timescale ratio that is needed for recovery. This is an important step
towards disentangling the necessity of multiple, seemingly redundant mechanisms. Yet, in the
simulations, the role of recurrent connectivity versus external inputs should be investigated
in more detail in order to ensure the generality of the finding that a recovery of the activity is
impossible for the presented rewiring rule without synaptic scaling.
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5:,"." ELife Overall, the combination of experiments and simulations is a promising approach to
investigating network self-organization. The gradual blocking of activity is especially
valuable to inform mathematical models and distinguish them from alternatives. Here, the
simulation results clearly demonstrate that the experimentally informed rule exhibits
qualitatively different dynamics including the need for another homeostatic mechanism.
However, a better connection between the simulations and experiment two would be
desirable. In particular, it is unclear whether the model would actually reproduce the
experiment, to which other experiments the model results relate, and which experimentally
testable predictions the model makes.

In summary, this manuscript makes a valuable contribution to discerning the mathematical
shape of a homeostatic structural plasticity model and understanding the necessity of
synaptic scaling in the same network. Both experimental and computational methods are
solid and well-described. Yet, both parts could be linked better in order to obtain conclusions
with more impact and generality.

Reviewer #2 (Public Review):

This manuscript by Lu et al addresses the understudied interplay between structural and
functional changes underlying homeostatic plasticity. Using hippocampal organotypic slice
cultures allowing chronic imaging of dendritic spines, the authors showed that partial or
complete inhibition of AMPA-type glutamate receptors differentially affects spine density,
respectively leading to an increase or decrease of spines. Based on that dataset, they built a
model where activity-dependent synapse formation is regulated by a biphasic rule and tested
it in stimulation- or deprivation-induced homeostatic plasticity. The model matches
experimental data (from the authors and the literature) quite well, and provides a framework
within which functional and structural changes coexist to regulate firing rate homeostasis.

While the correlation between changes in AMPAR numbers and in spine number/size has
been well characterized during Hebbian plasticity, the situation is much less clear in
homeostatic plasticity due to multiple studies yielding diverging results. This manuscript
adds new experimental results to the existing data and presents a valuable effort to generate
a model that can explain these divergences in a unifying and satisfactory framework.

The model and its successive implantation steps are well presented along a clear thread.
However, it would have benefited from having an actual timeline of structural changes
throughout the three days of AMPAR inhibition, especially as their experimental model
allows it. This would have provided additional information on spine dynamics (especially
transient spines) and on the respective timescale of the structural and functional changes,
and thus led to a better-informed model.

Additionally, the model would have been strengthened by an experimental dataset with
homeostatic plasticity induced by higher activity (e.g. with bicuculline). To the best of my
knowledge, there is currently no data on structural plasticity following scaling down, and it is
also known that scaling up and down are mediated by different molecular pathways. The
extension of the model from scaling up (in response to silencing) to scaling down (in response
to increased activity) offers an interesting perspective but may be a bit of a stretch.

Finally, the authors are very specific in their definition and distinction of structural and
functional homeostatic plasticity for their model. Structural plasticity is limited to spine
density and functional plasticity to synaptic scaling, which allows the authors to discuss the
interplay between very distinct "synapse number-based structural plasticity" and "synaptic
weight-based synaptic scaling", and appears to bypass the fact that spine size regulates the
space available for AMPARSs at the synapse and thus synaptic weight. The authors are of
course aware of the importance of changes in spine size, as they present some intriguing data

Han Lu et al., 2023 eLife. https://doi.org/10.7554/eLife.88376.1 34 of 37


https://doi.org/10.7554/eLife.88376.1

showing that spine size is differentially affected by partial or complete inhibition of AMPARs
and include the putative role of spine size changes in the discussion. However, spine size
does not seem to be taken into account in their network simulations, which present synaptic
scaling and structural plasticity as completely distinct processes. While the model still offers
interesting insights into the interaction of these processes, it would have benefited from a less
stringent distinction; this choice and the reasons behind it should be made more explicit in
the manuscript.
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Author Response:

We sincerely appreciate the recognition from both reviewers regarding the innovative
gradual activity-blocking design employing NBQX, as well as the robustness of our approach
that integrates experimental and computational approaches to investigate the interplay
between homeostatic functional and structural plasticity in response to activity deprivation.

Acknowledging the raised concerns and insightful advice shared by the reviewers, we
provide the the following provisional response:

Why did we focus on activity silencing? Our decision to focus on chronic activity deprivation
stems from a robust body of evidence—summarised in the recent review by Moulin and
colleagues (2022)—that highlights the consistent occurrence of homeostatic spine loss
alongside synaptic downscaling in response to prolonged excitation. In contrast, chronic
silencing studies, as outlined in the same review, exhibit inconsistencies and contradictions,
with spine loss often manifesting as non-homeostatic. After carefully reviewing the available
data, we formulated two hypotheses to account for this heterogeneity: (i) the non-linear
nature of activity-dependent structural plasticity, and (ii) the intricate interplay between
homeostatic synaptic scaling and structural plasticity influenced by factors such as the extend
of activity deprivation, specific dendritic segments, cell phenotypes, brain regions, and even
across species. The intricate exploration of these hypotheses necessitated a systematic
approach through computational simulations (and suitable experiments). The present
manuscript intentionally confines the discussion of heightened activity to a proof-of-concept
computer simulation, underscoring our deliberate emphasis on the central theme of activity
silencing. Nevertheless, we do concur with the reviewers that an intriguing avenue for future
exploration lies in extending the model to encompass homeostatic synaptic downscaling
triggered by augmented activity.

Why did we choose NBQX and why didn't we extensively characterise it? We utilised NBQX, a
competitive antagonist targeting AMPA receptors, enabling us to finely modulate network
activity via dosages (as elucidated by Wrathall et al., 2007), surpassing the control attainable
with TTX. Despite its atypical role in studying homeostatic synaptic plasticity, NBQX boasts
commendable efficacy in regulating network activity, substantiated by our
electrophysiological recordings as well as in vivo and in vitro studies (Follett et al., 2000;
Wrathall et al., 2007). However, it's worth noting that NBQX selectively binds to GluA2-
containing AMPA receptors, pivotal for TTX-triggered synaptic scaling (Gainey et al., 2009)
and glutamate-induced spine protrusion in the presence of TTX (Richards et al., 2005).
Importantly, there's no conclusive evidence suggesting that NBQX, when applied in isolation
(without TTX), hinders the synthesis or insertion of AMPA receptors. While we acknowledge
the interest and value in characterising NBQX separately, such an endeavour extends beyond
the immediate scope of our current study.

It's pertinent to also note that the models we employed—activity (calcium) dependent
homeostatic synaptic scaling and structural plasticity—are inherently phenomenological in
nature. In essence, these models refrain from delving into intricate molecular mechanisms
beyond the regulation of calcium concentration by firing rates. Given the highly
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phenomenological nature of our models, introducing a detailed molecular characterization of
NBQX, or expanding into a chronic increase in network activity scenarios targeting different
molecular pathways, could potentially create misleading expectations among our readers,
implying a level of molecular pathway implementation that is not our immediate focus.

7 eLife

Did the model successfully replicate the experimental findings? Achieving a strong
agreement between computer simulations and empirical data is often a sought-after
outcome, particularly when both aspects are integrated within a single study. However, this
congruence is not always the primary intent. In our present investigation, we introduced
three distinct ways in which experimental data merged with computational studies: to
provide informative input, to validate hypotheses, and to stimulate novel ideas.

Our experiments primarily aimed to inform the computational model through an analysis of
spine density. The computational framework was envisioned to yield insights that could be
broadly applicable, extending beyond the mere replication of conducted experiments. In this
context, our modelling outcomes effectively mirrored the heterogeneous alterations in
synapse numbers observed in various in vivo and in vitro studies following activity
deprivation—ranging from homeostatic increases to non-homeostatic synapse loss.

Our model also proposed a plausible mechanism illustrating how synaptic scaling might
propel the transition from non-homeostatic synapse loss to the restoration of synapse levels,
achieved by maximising inputs from active spines. This supposition found partial
confirmation when considering both our experimentally obtained spine sizes and those
detailed in the existing literature—pointing to a reduction in spine numbers but a
conservation of larger spine sizes during complete activity blockade.

Moreover, our experimental observations unveiled certain aspects that, while not entirely
encompassed by our model, have the potential to inspire future modelling studies. For
instance, we observed size-dependent changes in spine sizes under complete activity
blockade; we also observed inconsistent combinations of spine density and size changes
across dendritic segments upon activity deprivation. The prospect of reconfiguring the
interplay between structural plasticity and synaptic scaling rules to elucidate the observed
heterogeneity in outcomes stands as an intriguing avenue worth revisiting, particularly as
the modelling of structural plasticity within a network of intricately detailed neurons
becomes feasible.

In summary, while the aspiration to faithfully replicate experimental outcomes exists,
achieving an exact correspondence between a purposefully simplified system, like the point
neural network we employed in our study, and real-world data should be approached with
caution. Striving for such a match carries the risk of overfitting and prematurely advancing
conclusions that might not stand the test of broader applications.

Why did we establish strict definitions for functional and structural plasticity? The rationale
behind this strategic decision lies in the historical breadth of the term "structural plasticity,"
encompassing a wide array of high-dimensional alterations in neural morphology throughout
development and adulthood. This expansive interpretation contributed to the delayed
development of computational models specifically targeting structural plasticity. Moreover,
certain elements, like spine sizes, blur the boundaries with the functional facet of synapses as
also mentioned by the reviewers. We hope the reviewers and readers concur with our
perspective that implementing structural plasticity through the manipulation of synapse
numbers—effectively enabling dynamic (re)wiring—provides a high degree of freedom and
robustness. Synaptic size seamlessly translates into synaptic weights within the modelling
framework. While the distinction between synaptic weight and synapse number may seem
stringent, it meticulously prepares the groundwork for addressing a fundamental question:
How does the gradual modification of synapse numbers, juxtaposed with the swift
modulation of synaptic weights, interact within a perpetually evolving dynamic system? In
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(%) eLi fe this respect our study serves as a panoramic vista, unveiling possibilities wherein distinct

e combinations of these two governing principles can engender divergent outcomes. This
contribution not only stands as a benchmark but also extends a welcoming embrace to
forthcoming structural plasticity models that embrace the concept of continuous size and
number alterations.
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