001020039 001__ 1020039
001020039 005__ 20250206215502.0
001020039 0247_ $$2doi$$a10.1103/PhysRevResearch.5.043274
001020039 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-05840
001020039 0247_ $$2WOS$$aWOS:001133312500004
001020039 037__ $$aFZJ-2023-05840
001020039 041__ $$aEnglish
001020039 082__ $$a530
001020039 1001_ $$0P:(DE-Juel1)188528$$aFerreri, Alessandro$$b0
001020039 245__ $$aQuantum field heat engine powered by phonon-photon interactions
001020039 260__ $$aCollege Park, MD$$bAPS$$c2023
001020039 3367_ $$2DRIVER$$aarticle
001020039 3367_ $$2DataCite$$aOutput Types/Journal article
001020039 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1738825179_24856
001020039 3367_ $$2BibTeX$$aARTICLE
001020039 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001020039 3367_ $$00$$2EndNote$$aJournal Article
001020039 520__ $$aWe present a quantum heat engine based on a cavity with two oscillating mirrors that confine a quantum field. The engine performs an Otto cycle during which the walls and a field mode, together representing the working substance of the engine, interact via a nonlinear Hamiltonian. Resonances between the frequencies of the cavity mode and the walls allow one to transfer heat from the hot and the cold bath by exploiting the conversion between phononic and photonic excitations. We study the time evolution of the system and show that net work can be extracted after a full cycle. We evaluate the efficiency of the process.
001020039 536__ $$0G:(DE-HGF)POF4-5223$$a5223 - Quantum-Computer Control Systems and Cryoelectronics (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001020039 536__ $$0G:(BMBF)13N15685$$aVerbundprojekt: German Quantum Computer based on Superconducting Qubits (GEQCOS) - Teilvorhaben: Charakterisierung, Kontrolle und Auslese (13N15685)$$c13N15685$$x1
001020039 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001020039 7001_ $$0P:(DE-HGF)0$$aMacrì, Vincenzo$$b1
001020039 7001_ $$0P:(DE-Juel1)184630$$aWilhelm-Mauch, Frank$$b2$$ufzj
001020039 7001_ $$0P:(DE-HGF)0$$aNori, Franco$$b3
001020039 7001_ $$0P:(DE-Juel1)185963$$aBruschi, David Edward$$b4$$eCorresponding author$$ufzj
001020039 773__ $$0PERI:(DE-600)3004165-X$$a10.1103/PhysRevResearch.5.043274$$gVol. 5, no. 4, p. 043274$$n4$$p043274$$tPhysical review research$$v5$$x2643-1564$$y2023
001020039 8564_ $$uhttps://juser.fz-juelich.de/record/1020039/files/Invoice_INV_23_NOV_012507.pdf
001020039 8564_ $$uhttps://juser.fz-juelich.de/record/1020039/files/Invoice_INV_23_NOV_012507.gif?subformat=icon$$xicon
001020039 8564_ $$uhttps://juser.fz-juelich.de/record/1020039/files/Invoice_INV_23_NOV_012507.jpg?subformat=icon-1440$$xicon-1440
001020039 8564_ $$uhttps://juser.fz-juelich.de/record/1020039/files/Invoice_INV_23_NOV_012507.jpg?subformat=icon-180$$xicon-180
001020039 8564_ $$uhttps://juser.fz-juelich.de/record/1020039/files/Invoice_INV_23_NOV_012507.jpg?subformat=icon-640$$xicon-640
001020039 8564_ $$uhttps://juser.fz-juelich.de/record/1020039/files/PhysRevResearch.5.043274.pdf$$yOpenAccess
001020039 8564_ $$uhttps://juser.fz-juelich.de/record/1020039/files/PhysRevResearch.5.043274.gif?subformat=icon$$xicon$$yOpenAccess
001020039 8564_ $$uhttps://juser.fz-juelich.de/record/1020039/files/PhysRevResearch.5.043274.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001020039 8564_ $$uhttps://juser.fz-juelich.de/record/1020039/files/PhysRevResearch.5.043274.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001020039 8564_ $$uhttps://juser.fz-juelich.de/record/1020039/files/PhysRevResearch.5.043274.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001020039 8767_ $$8INV/23/NOV/012507$$92023-11-30$$a1200199020$$d2023-12-13$$eAPC$$jZahlung erfolgt$$zUSD 2675,-
001020039 909CO $$ooai:juser.fz-juelich.de:1020039$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001020039 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188528$$aForschungszentrum Jülich$$b0$$kFZJ
001020039 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184630$$aForschungszentrum Jülich$$b2$$kFZJ
001020039 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185963$$aForschungszentrum Jülich$$b4$$kFZJ
001020039 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5223$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001020039 9141_ $$y2023
001020039 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001020039 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001020039 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001020039 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001020039 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001020039 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001020039 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV RES : 2022$$d2023-10-27
001020039 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-27
001020039 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-27
001020039 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-08-16T10:08:58Z
001020039 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-08-16T10:08:58Z
001020039 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2022-08-16T10:08:58Z
001020039 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-27
001020039 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2023-10-27
001020039 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-27
001020039 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-27
001020039 920__ $$lyes
001020039 9201_ $$0I:(DE-Juel1)PGI-12-20200716$$kPGI-12$$lQuantum Computing Analytics$$x0
001020039 980__ $$ajournal
001020039 980__ $$aVDB
001020039 980__ $$aI:(DE-Juel1)PGI-12-20200716
001020039 980__ $$aAPC
001020039 980__ $$aUNRESTRICTED
001020039 9801_ $$aAPC
001020039 9801_ $$aFullTexts