001     1020052
005     20250401102817.0
024 7 _ |a 10.34734/FZJ-2023-05853
|2 datacite_doi
037 _ _ |a FZJ-2023-05853
041 _ _ |a English
100 1 _ |a Wasmer, Johannes
|0 P:(DE-Juel1)186072
|b 0
|e Corresponding author
|u fzj
111 2 _ |a Virtual Materials Design 2021
|g VMD21
|c online
|d 2021-07-20 - 2021-07-21
|w Germany
245 _ _ |a Comparison of structural representations for machine learning-enhanced DFT of impurity embeddings
260 _ _ |c 2022
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1704197607_26653
|2 PUB:(DE-HGF)
|x After Call
502 _ _ |c RWTH Aachen University
520 _ _ |a The acceleration or even replacement of ab initio methods for atomistic systems with surrogate models based on machine learning has gained traction in recent years [1]. This development stands on two pillars: The first one is the fast growth of materials databases, thanks in part to high-throughput calculation (HTC) infrastructures such as AiiDA [2]. The second one is advances in method development in atomistic machine learning, where finding the best representation of an atomic system as input for model training has been identified as a crucial step to success. Structural representations rely, like the Schrödinger equation, only on the atom positions and their chemical identity within a system [3], and are thus most suitable for this task.Here we investigate the possibility to accelerate the density functional theory (DFT) code juKKR [4] with machine learning starting potentials. This code has been used for instance to perform HTC on impurity embeddings into topological insulators [5]. We use a combinatorial approach to generate 7000 impurity embeddings from most elements of the periodic table into elemental crystals with the help of AiiDA. We generate their fingerprints using structural descriptors implemented in the DScribe package [6], such as smooth overlap of atomic positions. To benchmark their representational power for these embeddings, we present the results of a simple classification experiment.We acknowledge support by the Joint Lab Virtual Materials Design (JL-VMD) and thank for computing time granted by the JARA Vergabegremium and provided on the JARA Partition part of the supercomputer CLAIX at RWTH Aachen University. This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy – Cluster of Excellence Matter and Light for Quantum Computing (ML4Q) EXC 2004/1 – 390534769, and by AIDAS2 – AI, Data Analytics and Scalable Simulation – a virtual lab between CEA, France and FZJ, Germany.
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
536 _ _ |a DFG project 390534769 - EXC 2004: Materie und Licht für Quanteninformation (ML4Q) (390534769)
|0 G:(GEPRIS)390534769
|c 390534769
|x 1
536 _ _ |a EXC 2004:  Matter and Light for Quantum Computing (ML4Q) (390534769)
|0 G:(BMBF)390534769
|c 390534769
|x 2
536 _ _ |a AIDAS - Joint Virtual Laboratory for AI, Data Analytics and Scalable Simulation (aidas_20200731)
|0 G:(DE-Juel-1)aidas_20200731
|c aidas_20200731
|x 3
700 1 _ |a Rüssmann, Philipp
|0 P:(DE-Juel1)157882
|b 1
|u fzj
700 1 _ |a Blügel, Stefan
|0 P:(DE-Juel1)130548
|b 2
|u fzj
856 4 _ |u https://www.cecam.org/workshop-details/1093
856 4 _ |u https://juser.fz-juelich.de/record/1020052/files/Poster%20source.svg
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1020052/files/Poster.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1020052/files/Poster.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1020052/files/Poster.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1020052/files/Poster.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1020052/files/Poster.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1020052
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)186072
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)157882
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130548
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21