001020053 001__ 1020053
001020053 005__ 20250401102818.0
001020053 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-05854
001020053 037__ $$aFZJ-2023-05854
001020053 041__ $$aEnglish
001020053 1001_ $$0P:(DE-Juel1)186072$$aWasmer, Johannes$$b0$$eCorresponding author$$ufzj
001020053 245__ $$aDevelopment of a surrogate machine learning model for the acceleration of density functional calculations with the Korringa-Kohn-Rostoker method$$f2020-10-14 - 2021-10-13
001020053 260__ $$c2021
001020053 300__ $$a113
001020053 3367_ $$2DataCite$$aOutput Types/Supervised Student Publication
001020053 3367_ $$02$$2EndNote$$aThesis
001020053 3367_ $$2BibTeX$$aMASTERSTHESIS
001020053 3367_ $$2DRIVER$$amasterThesis
001020053 3367_ $$0PUB:(DE-HGF)19$$2PUB:(DE-HGF)$$aMaster Thesis$$bmaster$$mmaster$$s1704276250_16769
001020053 3367_ $$2ORCID$$aSUPERVISED_STUDENT_PUBLICATION
001020053 500__ $$ahttps://iffgit.fz-juelich.de/phd-project-wasmer/projects/single-impurity-database
001020053 502__ $$aMasterarbeit, RWTH Aachen University, 2022$$bMasterarbeit$$cRWTH Aachen University$$d2022$$o2021-12-22
001020053 520__ $$aDensity functional theory (DFT) has become an indispensable tool in materials science. Specialized DFT methods like the Korringa-Kohan Rostoker Green Function (KKR) method are predestined to investigate the technologically relevant effects of crystallographic defects on the electronic and magnetic structure of host materials. This thesis lays the groundwork for answering the question of whether surrogate machine learning (ML) models have the potential to accelerate such DFT calculations since their computational complexity severely limits them to systems sizes of about a thousand atoms in practice. To that end, a versatile suite of software tools that facilitates the generation and analysis of high-throughput computing DFT datasets with the JuKKR DFT codes and the AiiDA workflow engine is presented. We demonstrate its use by generating a database of 8,760 converged KKR DFT calculations of single impurity embeddings into elemental crystals with 60 different chemical elements and varying lattice constants and that preserves the full data provenance of each calculation. Finally, we use the single-impurity database to compare the Coulomb Matrix and the Smooth Overlap of Atomic Positions (SOAP) as structural descriptors of the local atomic environment for materials defects. Their potential use in surrogate ML models is showcased in a simple example of host crystal structure prediction that achieves 93 percent accuracy.
001020053 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001020053 536__ $$0G:(GEPRIS)390534769$$aDFG project 390534769 - EXC 2004: Materie und Licht für Quanteninformation (ML4Q) (390534769)$$c390534769$$x1
001020053 536__ $$0G:(BMBF)390534769$$aEXC 2004:  Matter and Light for Quantum Computing (ML4Q) (390534769)$$c390534769$$x2
001020053 536__ $$0G:(DE-Juel-1)aidas_20200731$$aAIDAS - Joint Virtual Laboratory for AI, Data Analytics and Scalable Simulation (aidas_20200731)$$caidas_20200731$$x3
001020053 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b1$$eThesis advisor$$ufzj
001020053 7001_ $$0P:(DE-Juel1)157882$$aRüssmann, Philipp$$b2$$eThesis advisor$$ufzj
001020053 7001_ $$0P:(DE-HGF)0$$aBerkels, Benjamin$$b3$$eReviewer
001020053 8564_ $$uhttps://iffgit.fz-juelich.de/phd-project-wasmer/theses/master-thesis
001020053 8564_ $$uhttps://juser.fz-juelich.de/record/1020053/files/MSc-Slides_Wasmer.pdf$$yRestricted
001020053 8564_ $$uhttps://juser.fz-juelich.de/record/1020053/files/MSc-Thesis_Wasmer.pdf$$yOpenAccess
001020053 8564_ $$uhttps://juser.fz-juelich.de/record/1020053/files/MSc-Slides_Wasmer.gif?subformat=icon$$xicon$$yRestricted
001020053 8564_ $$uhttps://juser.fz-juelich.de/record/1020053/files/MSc-Slides_Wasmer.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
001020053 8564_ $$uhttps://juser.fz-juelich.de/record/1020053/files/MSc-Slides_Wasmer.jpg?subformat=icon-180$$xicon-180$$yRestricted
001020053 8564_ $$uhttps://juser.fz-juelich.de/record/1020053/files/MSc-Slides_Wasmer.jpg?subformat=icon-640$$xicon-640$$yRestricted
001020053 8564_ $$uhttps://juser.fz-juelich.de/record/1020053/files/MSc-Thesis_Wasmer.gif?subformat=icon$$xicon$$yOpenAccess
001020053 8564_ $$uhttps://juser.fz-juelich.de/record/1020053/files/MSc-Thesis_Wasmer.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001020053 8564_ $$uhttps://juser.fz-juelich.de/record/1020053/files/MSc-Thesis_Wasmer.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001020053 8564_ $$uhttps://juser.fz-juelich.de/record/1020053/files/MSc-Thesis_Wasmer.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001020053 909CO $$ooai:juser.fz-juelich.de:1020053$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001020053 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186072$$aForschungszentrum Jülich$$b0$$kFZJ
001020053 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b1$$kFZJ
001020053 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157882$$aForschungszentrum Jülich$$b2$$kFZJ
001020053 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b3$$kRWTH
001020053 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001020053 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001020053 920__ $$lyes
001020053 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
001020053 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
001020053 980__ $$amaster
001020053 980__ $$aVDB
001020053 980__ $$aUNRESTRICTED
001020053 980__ $$aI:(DE-Juel1)IAS-1-20090406
001020053 980__ $$aI:(DE-Juel1)PGI-1-20110106
001020053 9801_ $$aFullTexts