001     1020053
005     20250401102818.0
024 7 _ |a 10.34734/FZJ-2023-05854
|2 datacite_doi
037 _ _ |a FZJ-2023-05854
041 _ _ |a English
100 1 _ |a Wasmer, Johannes
|0 P:(DE-Juel1)186072
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Development of a surrogate machine learning model for the acceleration of density functional calculations with the Korringa-Kohn-Rostoker method
|f 2020-10-14 - 2021-10-13
260 _ _ |c 2021
300 _ _ |a 113
336 7 _ |a Output Types/Supervised Student Publication
|2 DataCite
336 7 _ |a Thesis
|0 2
|2 EndNote
336 7 _ |a MASTERSTHESIS
|2 BibTeX
336 7 _ |a masterThesis
|2 DRIVER
336 7 _ |a Master Thesis
|b master
|m master
|0 PUB:(DE-HGF)19
|s 1704276250_16769
|2 PUB:(DE-HGF)
336 7 _ |a SUPERVISED_STUDENT_PUBLICATION
|2 ORCID
500 _ _ |a https://iffgit.fz-juelich.de/phd-project-wasmer/projects/single-impurity-database
502 _ _ |a Masterarbeit, RWTH Aachen University, 2022
|c RWTH Aachen University
|b Masterarbeit
|d 2022
|o 2021-12-22
520 _ _ |a Density functional theory (DFT) has become an indispensable tool in materials science. Specialized DFT methods like the Korringa-Kohan Rostoker Green Function (KKR) method are predestined to investigate the technologically relevant effects of crystallographic defects on the electronic and magnetic structure of host materials. This thesis lays the groundwork for answering the question of whether surrogate machine learning (ML) models have the potential to accelerate such DFT calculations since their computational complexity severely limits them to systems sizes of about a thousand atoms in practice. To that end, a versatile suite of software tools that facilitates the generation and analysis of high-throughput computing DFT datasets with the JuKKR DFT codes and the AiiDA workflow engine is presented. We demonstrate its use by generating a database of 8,760 converged KKR DFT calculations of single impurity embeddings into elemental crystals with 60 different chemical elements and varying lattice constants and that preserves the full data provenance of each calculation. Finally, we use the single-impurity database to compare the Coulomb Matrix and the Smooth Overlap of Atomic Positions (SOAP) as structural descriptors of the local atomic environment for materials defects. Their potential use in surrogate ML models is showcased in a simple example of host crystal structure prediction that achieves 93 percent accuracy.
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
536 _ _ |a DFG project 390534769 - EXC 2004: Materie und Licht für Quanteninformation (ML4Q) (390534769)
|0 G:(GEPRIS)390534769
|c 390534769
|x 1
536 _ _ |a EXC 2004:  Matter and Light for Quantum Computing (ML4Q) (390534769)
|0 G:(BMBF)390534769
|c 390534769
|x 2
536 _ _ |a AIDAS - Joint Virtual Laboratory for AI, Data Analytics and Scalable Simulation (aidas_20200731)
|0 G:(DE-Juel-1)aidas_20200731
|c aidas_20200731
|x 3
700 1 _ |a Blügel, Stefan
|0 P:(DE-Juel1)130548
|b 1
|e Thesis advisor
|u fzj
700 1 _ |a Rüssmann, Philipp
|0 P:(DE-Juel1)157882
|b 2
|e Thesis advisor
|u fzj
700 1 _ |a Berkels, Benjamin
|0 P:(DE-HGF)0
|b 3
|e Reviewer
856 4 _ |u https://iffgit.fz-juelich.de/phd-project-wasmer/theses/master-thesis
856 4 _ |u https://juser.fz-juelich.de/record/1020053/files/MSc-Slides_Wasmer.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1020053/files/MSc-Thesis_Wasmer.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1020053/files/MSc-Slides_Wasmer.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1020053/files/MSc-Slides_Wasmer.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1020053/files/MSc-Slides_Wasmer.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1020053/files/MSc-Slides_Wasmer.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1020053/files/MSc-Thesis_Wasmer.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1020053/files/MSc-Thesis_Wasmer.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1020053/files/MSc-Thesis_Wasmer.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1020053/files/MSc-Thesis_Wasmer.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1020053
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)186072
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130548
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)157882
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
980 _ _ |a master
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21