Home > Publications database > Benchmark study of symmetry-adapted ML-DFT models for magnetically doped topological insulators > print |
001 | 1020055 | ||
005 | 20250401102818.0 | ||
024 | 7 | _ | |a 10.34734/FZJ-2023-05856 |2 datacite_doi |
037 | _ | _ | |a FZJ-2023-05856 |
041 | _ | _ | |a English |
100 | 1 | _ | |a Wasmer, Johannes |0 P:(DE-Juel1)186072 |b 0 |e Corresponding author |u fzj |
111 | 2 | _ | |a Psi-k 2022 Conference |g psik2022 |c Lausanne |d 2022-08-22 - 2022-08-25 |w Switzerland |
245 | _ | _ | |a Benchmark study of symmetry-adapted ML-DFT models for magnetically doped topological insulators |
260 | _ | _ | |c 2022 |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a CONFERENCE_POSTER |2 ORCID |
336 | 7 | _ | |a Output Types/Conference Poster |2 DataCite |
336 | 7 | _ | |a Poster |b poster |m poster |0 PUB:(DE-HGF)24 |s 1739448512_4289 |2 PUB:(DE-HGF) |x After Call |
500 | _ | _ | |a Abstract also available on the event website https://www.psik2022.net/ |
502 | _ | _ | |c RWTH Aachen University |
520 | _ | _ | |a We present a benchmark study of surrogate models for impurities embedded into crystalline solids. Using the Korringa-Kohn-Rostoker Green Function method [1], we have built databases of several thousand calculations of single impurities (monomers) embedded into different elemental crystals, as well as of the topological insulator Bi2Te3, magnetically co-doped with transition metal impurities (dimers). We predict the converged monomer impurity electron potential and the isotropic exchange interaction of the impurity dimer in the classical Heisenberg model. From these surrogates, we intend to build transferable models for larger systems in the future, which will accelerate the convergence of our DFT codes. The study compares various recent E(3)-equivariant models such as ACE and NequIP [2] in terms of performance and reproducible end-to-end workflows.[1] P. Rüßmann et al., npj Comput Mater 7, 13 (2021)[2] I. Batatia et al., arXiv:2205.06643 (2022) |
536 | _ | _ | |a 5211 - Topological Matter (POF4-521) |0 G:(DE-HGF)POF4-5211 |c POF4-521 |f POF IV |x 0 |
536 | _ | _ | |a HDS LEE - Helmholtz School for Data Science in Life, Earth and Energy (HDS LEE) (HDS-LEE-20190612) |0 G:(DE-Juel1)HDS-LEE-20190612 |c HDS-LEE-20190612 |x 1 |
536 | _ | _ | |a AIDAS - Joint Virtual Laboratory for AI, Data Analytics and Scalable Simulation (aidas_20200731) |0 G:(DE-Juel-1)aidas_20200731 |c aidas_20200731 |x 2 |
700 | 1 | _ | |a Mozumder, Rubel |0 P:(DE-Juel1)185917 |b 1 |
700 | 1 | _ | |a Rüssmann, Philipp |0 P:(DE-Juel1)157882 |b 2 |u fzj |
700 | 1 | _ | |a Assent, Ira |0 P:(DE-Juel1)188313 |b 3 |u fzj |
700 | 1 | _ | |a Blügel, Stefan |0 P:(DE-Juel1)130548 |b 4 |u fzj |
856 | 4 | _ | |u https://iffgit.fz-juelich.de/phd-project-wasmer/presentations/2022-08-22-poster-psik22 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1020055/files/poster.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1020055/files/poster.gif?subformat=icon |x icon |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1020055/files/poster.jpg?subformat=icon-1440 |x icon-1440 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1020055/files/poster.jpg?subformat=icon-180 |x icon-180 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1020055/files/poster.jpg?subformat=icon-640 |x icon-640 |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:1020055 |p openaire |p open_access |p VDB |p driver |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)186072 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)157882 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)188313 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)130548 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-521 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Materials |9 G:(DE-HGF)POF4-5211 |x 0 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-1-20090406 |k IAS-1 |l Quanten-Theorie der Materialien |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-1-20110106 |k PGI-1 |l Quanten-Theorie der Materialien |x 1 |
980 | _ | _ | |a poster |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IAS-1-20090406 |
980 | _ | _ | |a I:(DE-Juel1)PGI-1-20110106 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|