001020059 001__ 1020059
001020059 005__ 20250401102818.0
001020059 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-05860
001020059 037__ $$aFZJ-2023-05860
001020059 041__ $$aEnglish
001020059 1001_ $$0P:(DE-Juel1)186072$$aWasmer, Johannes$$b0$$eCorresponding author$$ufzj
001020059 1112_ $$aWE-Heraeus workshop on First-principles Green function formalisms$$cAthens$$d2023-09-04 - 2023-09-07$$gGF2023$$wGreece
001020059 245__ $$aBenchmark study of symmetry-adapted ML-DFT models for magnetically doped topological insulators
001020059 260__ $$c2023
001020059 3367_ $$033$$2EndNote$$aConference Paper
001020059 3367_ $$2DataCite$$aOther
001020059 3367_ $$2BibTeX$$aINPROCEEDINGS
001020059 3367_ $$2DRIVER$$aconferenceObject
001020059 3367_ $$2ORCID$$aLECTURE_SPEECH
001020059 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1704208355_24797$$xInvited
001020059 500__ $$ahttps://go.fzj.de/gf2023
001020059 502__ $$cRWTH Aachen University
001020059 520__ $$aWe present a benchmark study of surrogate models for impurities embedded into crystalline solids. Using the Korringa-Kohn-Rostoker Green Function method [1], we have built databases of several thousand calculations of single impurities (monomers) embedded into different elemental crystals, as well as magnetic transition metal impurity dimers embedded in the topological insulator Bi2Te3. We predict the converged monomer impurity electron potential and the isotropic exchange interaction of the impurity dimer in the classical Heisenberg model. From these surrogates, we intend to build transferable models for larger systems in the future, which will accelerate the convergence of our DFT codes. The study compares various recent E(3)-equivariant models such as ACE and MACE [2] in terms of performance and reproducible end-to-end workflows. [1] P. Rüßmann et al., npj Comput Mater 7, 13 (2021) [2] I. Batatia et al., arXiv:2206.07697 (2022)
001020059 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001020059 536__ $$0G:(DE-Juel-1)aidas_20200731$$aAIDAS - Joint Virtual Laboratory for AI, Data Analytics and Scalable Simulation (aidas_20200731)$$caidas_20200731$$x1
001020059 536__ $$0G:(DE-Juel1)HDS-LEE-20190612$$aHDS LEE - Helmholtz School for Data Science in Life, Earth and Energy (HDS LEE) (HDS-LEE-20190612)$$cHDS-LEE-20190612$$x2
001020059 536__ $$0G:(GEPRIS)491111487$$aDFG project 491111487 - Open-Access-Publikationskosten / 2022 - 2024 / Forschungszentrum Jülich (OAPKFZJ) (491111487)$$c491111487$$x3
001020059 536__ $$0G:(GEPRIS)390534769$$aDFG project 390534769 - EXC 2004: Materie und Licht für Quanteninformation (ML4Q) (390534769)$$c390534769$$x4
001020059 536__ $$0G:(BMBF)390534769$$aEXC 2004: Matter and Light for Quantum Computing (ML4Q) (390534769)$$c390534769$$x5
001020059 7001_ $$0P:(DE-Juel1)185917$$aMozumder, Rubel$$b1
001020059 7001_ $$0P:(DE-Juel1)157882$$aRüssmann, Philipp$$b2$$ufzj
001020059 7001_ $$0P:(DE-Juel1)188313$$aAssent, Ira$$b3$$ufzj
001020059 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b4$$ufzj
001020059 8564_ $$uhttps://iffgit.fz-juelich.de/phd-project-wasmer/presentations/2023-09-04-talk-gf2023
001020059 8564_ $$uhttps://juser.fz-juelich.de/record/1020059/files/presentation.pdf$$yOpenAccess
001020059 8564_ $$uhttps://juser.fz-juelich.de/record/1020059/files/presentation.gif?subformat=icon$$xicon$$yOpenAccess
001020059 8564_ $$uhttps://juser.fz-juelich.de/record/1020059/files/presentation.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001020059 8564_ $$uhttps://juser.fz-juelich.de/record/1020059/files/presentation.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001020059 8564_ $$uhttps://juser.fz-juelich.de/record/1020059/files/presentation.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001020059 909CO $$ooai:juser.fz-juelich.de:1020059$$pdriver$$pVDB$$popen_access$$popenaire
001020059 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186072$$aForschungszentrum Jülich$$b0$$kFZJ
001020059 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157882$$aForschungszentrum Jülich$$b2$$kFZJ
001020059 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188313$$aForschungszentrum Jülich$$b3$$kFZJ
001020059 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b4$$kFZJ
001020059 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001020059 9141_ $$y2023
001020059 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001020059 920__ $$lyes
001020059 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
001020059 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
001020059 980__ $$aconf
001020059 980__ $$aVDB
001020059 980__ $$aUNRESTRICTED
001020059 980__ $$aI:(DE-Juel1)IAS-1-20090406
001020059 980__ $$aI:(DE-Juel1)PGI-1-20110106
001020059 9801_ $$aFullTexts