001     1020214
005     20250204113744.0
024 7 _ |a 10.1029/2023EA003076
|2 doi
024 7 _ |a 10.34734/FZJ-2023-05881
|2 datacite_doi
024 7 _ |a WOS:001132904600001
|2 WOS
037 _ _ |a FZJ-2023-05881
041 _ _ |a English
082 _ _ |a 550
100 1 _ |a Xu, Shuang
|0 0000-0002-1221-5338
|b 0
|e Corresponding author
245 _ _ |a Seasonal Distribution of Gravity Waves Near the Stratopause in 2019–2022
260 _ _ |a Malden, Mass.
|c 2024
|b American Geophysical Union
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1704440407_29017
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The cloud imaging and particle size (CIPS) instrument onboard the Aeronomy of Ice in the Mesosphere satellite provides images of gravity waves (GWs) near the stratopause and lowermost mesosphere (altitudes of 50–55 km). GW identification is based on Rayleigh Albedo Anomaly (RAA) variances, which are derived from GW-induced fluctuations in Rayleigh scattering at 265 nm. Based on 3 years of CIPS RAA variance data from 2019 to 2022, we report for the first time the seasonal distribution of GWs entering the mesosphere with high (7.5 km) horizontal resolution on a near-global scale. Seasonally averaged GW variances clearly show spatial and temporal patterns of GW activity, mainly due to the seasonal variation of primary GW sources such as convection, the polar vortices and flow over mountains. Measurements of stratospheric GWs derived from Atmospheric InfraRed Sounder (AIRS) observations of 4.3 μm brightness temperature perturbations within the same 3-year time range are compared to the CIPS results. The comparisons show that locations of GW hotspots are similar in the CIPS and AIRS observations. Variability in GW variances and the monthly changes in background zonal wind suggest a strong GW-wind correlation. This study demonstrates the utility of the CIPS GW variance data set for statistical investigations of GWs in the lowermost mesosphere, as well as provides a reference for location/time selection for GW case studies.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Carstens, Justin N.
|0 0000-0003-0396-3980
|b 1
700 1 _ |a France, Jeff A.
|0 0000-0003-2446-0303
|b 2
700 1 _ |a Randall, Cora E.
|0 0000-0002-4313-4397
|b 3
700 1 _ |a Yue, Jia
|0 0000-0003-0577-5289
|b 4
700 1 _ |a Harvey, V. Lynn
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Gong, Jie
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Lumpe, Jerry
|0 0000-0002-8754-702X
|b 7
700 1 _ |a Hoffmann, Lars
|0 P:(DE-Juel1)129125
|b 8
700 1 _ |a Russell, James M.
|0 P:(DE-HGF)0
|b 9
773 _ _ |a 10.1029/2023EA003076
|g Vol. 11, no. 1, p. e2023EA003076
|0 PERI:(DE-600)2807271-6
|n 1
|p e2023EA003076
|t Earth and Space Science
|v 11
|y 2024
|x 2333-5084
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1020214/files/FZJ-2023-05881.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1020214/files/FZJ-2023-05881.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1020214/files/FZJ-2023-05881.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1020214/files/FZJ-2023-05881.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1020214/files/FZJ-2023-05881.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1020214
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)129125
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-22
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-22
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-22
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-22
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EARTH SPACE SCI : 2022
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-08-08T17:05:29Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-08-08T17:05:29Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-08-08T17:05:29Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-10
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-10
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-10
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21