001020231 001__ 1020231
001020231 005__ 20240226075244.0
001020231 0247_ $$2doi$$a10.1038/s41567-023-02104-5
001020231 0247_ $$2ISSN$$a1745-2473
001020231 0247_ $$2ISSN$$a1745-2481
001020231 0247_ $$2WOS$$aWOS:001025581000001
001020231 037__ $$aFZJ-2023-05898
001020231 082__ $$a530
001020231 1001_ $$0P:(DE-HGF)0$$aSoldini, Martina O.$$b0$$eCollaboration author
001020231 245__ $$aTwo-dimensional Shiba lattices as a possible platform for crystalline topological superconductivity
001020231 260__ $$aBasingstoke$$bNature Publishing Group$$c2023
001020231 3367_ $$2DRIVER$$aarticle
001020231 3367_ $$2DataCite$$aOutput Types/Journal article
001020231 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1704277194_16938
001020231 3367_ $$2BibTeX$$aARTICLE
001020231 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001020231 3367_ $$00$$2EndNote$$aJournal Article
001020231 520__ $$aLocalized or propagating Majorana boundary modes are the key feature of topological superconductors. They are rare in naturally occurring compounds, but the tailored manipulation of quantum matter offers opportunities for their realization. Specifically, lattices of Yu–Shiba–Rusinov bound states—Shiba lattices—that arise when magnetic adatoms are placed on the surface of a conventional superconductor can be used to create topological bands within the superconducting gap of the substrate. Here we reveal two signatures consistent with the realization of two types of mirror-symmetry-protected topological superconductor using scanning tunnelling microscopy to create and probe adatom lattices with single-atom precision. The first has edge modes as well as higher-order corner states, and the second has symmetry-protected bulk nodal points. In principle, their topological character and boundary modes should be protected by the spatial symmetries of the adatom lattice. Our results highlight the potential of Shiba lattices as a platform to design the topology and sample geometry of two-dimensional superconductors.
001020231 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001020231 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001020231 7001_ $$0P:(DE-HGF)0$$aKüster, Felix$$b1$$eCorresponding author
001020231 7001_ $$0P:(DE-HGF)0$$aWagner, Glenn$$b2
001020231 7001_ $$0P:(DE-HGF)0$$aDas, Souvik$$b3
001020231 7001_ $$0P:(DE-Juel1)185991$$aAldarawsheh, Amal$$b4
001020231 7001_ $$0P:(DE-HGF)0$$aThomale, Ronny$$b5
001020231 7001_ $$0P:(DE-Juel1)130805$$aLounis, Samir$$b6
001020231 7001_ $$0P:(DE-HGF)0$$aParkin, Stuart S. P.$$b7
001020231 7001_ $$0P:(DE-HGF)0$$aSessi, Paolo$$b8
001020231 7001_ $$0P:(DE-HGF)0$$aNeupert, Titus$$b9
001020231 773__ $$0PERI:(DE-600)2206346-8$$a10.1038/s41567-023-02104-5$$gVol. 19, no. 12, p. 1848 - 1854$$n12$$p1848 - 1854$$tNature physics$$v19$$x1745-2473$$y2023
001020231 8564_ $$uhttps://juser.fz-juelich.de/record/1020231/files/2307.06365.pdf$$yRestricted
001020231 8564_ $$uhttps://juser.fz-juelich.de/record/1020231/files/2307.06365.gif?subformat=icon$$xicon$$yRestricted
001020231 8564_ $$uhttps://juser.fz-juelich.de/record/1020231/files/2307.06365.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
001020231 8564_ $$uhttps://juser.fz-juelich.de/record/1020231/files/2307.06365.jpg?subformat=icon-180$$xicon-180$$yRestricted
001020231 8564_ $$uhttps://juser.fz-juelich.de/record/1020231/files/2307.06365.jpg?subformat=icon-640$$xicon-640$$yRestricted
001020231 909CO $$ooai:juser.fz-juelich.de:1020231$$pVDB
001020231 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a University of Zurich, Zurich, Switzerland$$b0
001020231 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Max Planck Institute of Microstructure Physics, Halle, Germany$$b1
001020231 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a University of Zurich, Zurich, Switzerland$$b2
001020231 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Max Planck Institute of Microstructure Physics, Halle, Germany$$b3
001020231 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185991$$aForschungszentrum Jülich$$b4$$kFZJ
001020231 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Physics and Quantum Centers in Diamond and Emerging Materials (QuCenDiEM) Group, Indian Institute of Technology Madras, Chennai, India$$b5
001020231 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Institut fur Theoretische Physik und Astrophysik, Universität Würzburg, Würzburg, Germany$$b5
001020231 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130805$$aForschungszentrum Jülich$$b6$$kFZJ
001020231 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Max Planck Institute of Microstructure Physics, Halle, Germany$$b7
001020231 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Max Planck Institute of Microstructure Physics, Halle, Germany$$b8
001020231 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a University of Zurich, Zurich, Switzerland$$b9
001020231 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001020231 9141_ $$y2023
001020231 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-25$$wger
001020231 915__ $$0StatID:(DE-HGF)3003$$2StatID$$aDEAL Nature$$d2023-10-25$$wger
001020231 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-25
001020231 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-25
001020231 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-25
001020231 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-25
001020231 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-25
001020231 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT PHYS : 2022$$d2023-10-25
001020231 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-25
001020231 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-25
001020231 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-25
001020231 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-25
001020231 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNAT PHYS : 2022$$d2023-10-25
001020231 920__ $$lyes
001020231 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
001020231 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
001020231 980__ $$ajournal
001020231 980__ $$aVDB
001020231 980__ $$aI:(DE-Juel1)IAS-1-20090406
001020231 980__ $$aI:(DE-Juel1)PGI-1-20110106
001020231 980__ $$aUNRESTRICTED