Home > Publications database > Two-dimensional Shiba lattices as a possible platform for crystalline topological superconductivity > print |
001 | 1020231 | ||
005 | 20240226075244.0 | ||
024 | 7 | _ | |a 10.1038/s41567-023-02104-5 |2 doi |
024 | 7 | _ | |a 1745-2473 |2 ISSN |
024 | 7 | _ | |a 1745-2481 |2 ISSN |
024 | 7 | _ | |a WOS:001025581000001 |2 WOS |
037 | _ | _ | |a FZJ-2023-05898 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Soldini, Martina O. |0 P:(DE-HGF)0 |b 0 |e Collaboration author |
245 | _ | _ | |a Two-dimensional Shiba lattices as a possible platform for crystalline topological superconductivity |
260 | _ | _ | |a Basingstoke |c 2023 |b Nature Publishing Group |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1704277194_16938 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Localized or propagating Majorana boundary modes are the key feature of topological superconductors. They are rare in naturally occurring compounds, but the tailored manipulation of quantum matter offers opportunities for their realization. Specifically, lattices of Yu–Shiba–Rusinov bound states—Shiba lattices—that arise when magnetic adatoms are placed on the surface of a conventional superconductor can be used to create topological bands within the superconducting gap of the substrate. Here we reveal two signatures consistent with the realization of two types of mirror-symmetry-protected topological superconductor using scanning tunnelling microscopy to create and probe adatom lattices with single-atom precision. The first has edge modes as well as higher-order corner states, and the second has symmetry-protected bulk nodal points. In principle, their topological character and boundary modes should be protected by the spatial symmetries of the adatom lattice. Our results highlight the potential of Shiba lattices as a platform to design the topology and sample geometry of two-dimensional superconductors. |
536 | _ | _ | |a 5211 - Topological Matter (POF4-521) |0 G:(DE-HGF)POF4-5211 |c POF4-521 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Küster, Felix |0 P:(DE-HGF)0 |b 1 |e Corresponding author |
700 | 1 | _ | |a Wagner, Glenn |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Das, Souvik |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Aldarawsheh, Amal |0 P:(DE-Juel1)185991 |b 4 |
700 | 1 | _ | |a Thomale, Ronny |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Lounis, Samir |0 P:(DE-Juel1)130805 |b 6 |
700 | 1 | _ | |a Parkin, Stuart S. P. |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Sessi, Paolo |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Neupert, Titus |0 P:(DE-HGF)0 |b 9 |
773 | _ | _ | |a 10.1038/s41567-023-02104-5 |g Vol. 19, no. 12, p. 1848 - 1854 |0 PERI:(DE-600)2206346-8 |n 12 |p 1848 - 1854 |t Nature physics |v 19 |y 2023 |x 1745-2473 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1020231/files/2307.06365.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1020231/files/2307.06365.gif?subformat=icon |x icon |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1020231/files/2307.06365.jpg?subformat=icon-1440 |x icon-1440 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1020231/files/2307.06365.jpg?subformat=icon-180 |x icon-180 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1020231/files/2307.06365.jpg?subformat=icon-640 |x icon-640 |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:1020231 |p VDB |
910 | 1 | _ | |a University of Zurich, Zurich, Switzerland |0 I:(DE-HGF)0 |b 0 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Max Planck Institute of Microstructure Physics, Halle, Germany |0 I:(DE-HGF)0 |b 1 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a University of Zurich, Zurich, Switzerland |0 I:(DE-HGF)0 |b 2 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Max Planck Institute of Microstructure Physics, Halle, Germany |0 I:(DE-HGF)0 |b 3 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)185991 |
910 | 1 | _ | |a Department of Physics and Quantum Centers in Diamond and Emerging Materials (QuCenDiEM) Group, Indian Institute of Technology Madras, Chennai, India |0 I:(DE-HGF)0 |b 5 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Institut fur Theoretische Physik und Astrophysik, Universität Würzburg, Würzburg, Germany |0 I:(DE-HGF)0 |b 5 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)130805 |
910 | 1 | _ | |a Max Planck Institute of Microstructure Physics, Halle, Germany |0 I:(DE-HGF)0 |b 7 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Max Planck Institute of Microstructure Physics, Halle, Germany |0 I:(DE-HGF)0 |b 8 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a University of Zurich, Zurich, Switzerland |0 I:(DE-HGF)0 |b 9 |6 P:(DE-HGF)0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-521 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Materials |9 G:(DE-HGF)POF4-5211 |x 0 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2023-10-25 |w ger |
915 | _ | _ | |a DEAL Nature |0 StatID:(DE-HGF)3003 |2 StatID |d 2023-10-25 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-25 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-10-25 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NAT PHYS : 2022 |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-10-25 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-10-25 |
915 | _ | _ | |a IF >= 15 |0 StatID:(DE-HGF)9915 |2 StatID |b NAT PHYS : 2022 |d 2023-10-25 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-1-20090406 |k IAS-1 |l Quanten-Theorie der Materialien |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-1-20110106 |k PGI-1 |l Quanten-Theorie der Materialien |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IAS-1-20090406 |
980 | _ | _ | |a I:(DE-Juel1)PGI-1-20110106 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|