001     1020235
005     20240226075245.0
024 7 _ |a 10.1016/j.jhydrol.2023.130288
|2 doi
024 7 _ |a 0022-1694
|2 ISSN
024 7 _ |a 1879-2707
|2 ISSN
024 7 _ |a 10.34734/FZJ-2023-05902
|2 datacite_doi
024 7 _ |a WOS:001105324500001
|2 WOS
037 _ _ |a FZJ-2023-05902
082 _ _ |a 690
100 1 _ |a Bayat, Bagher
|0 P:(DE-Juel1)177038
|b 0
|e Corresponding author
245 _ _ |a Implications for sustainable water consumption in Africa by simulating five decades (1965–2014) of groundwater recharge
260 _ _ |a Amsterdam [u.a.]
|c 2023
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1704192923_26654
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Groundwater stands as a vital water resource for both present and future generations in Africa. This underscores the importance of examining the sustainability of current groundwater consumption across the continent, along with its capacity to fulfill the current human and essential environmental water needs. Groundwater sustainable yield is a suitable indicator for assessing groundwater sustainability but has not yet been quantified properly across Africa. A thorough quantification of groundwater sustainable yield necessitates a profound comprehension of the spatio-temporal fluctuations in surface hydrology, groundwater recharge, environmental flow, and sectoral water use. In this study, high spatial resolution (10 km) land surface hydrology was simulated for five decades (1965–2014) across Africa by the Community Land Model version 5 at half-hourly time step and aggregated to monthly and annual temporal resolutions. Then, groundwater recharge and environmental flow were quantified based on the water balance approach for the whole continent. Finally, by including African sectoral water use data available for four decades (1971–2010) we obtained the long-term average of groundwater sustainable yield. Based on extensive simulations of long-term land surface hydrology, we discovered that the groundwater system in Africa experienced an average annual recharge of 57.8 mm yr−1 (with a standard deviation of 110.8 mm yr−1 serving as an indicator of spatial variability), corresponding roughly to an annual recharge volume of 1793.6 km3 yr−1. Furthermore, our analysis revealed that the entire continent possesses an annual average potential sustainable yield (with standard deviations) of 4.5 mm yr−1 (10.2), 20.6 mm yr−1 (42.9), and 37.3 mm yr−1 (75.7) under conservative, optimum, and suitable water consumption scenarios, respectively. This calculated annual groundwater sustainable yield corresponds to 141.9 km3 yr−1, 643.1 km3 yr−1, and 1160.5 km3 yr−1 for the conservative, optimum, and suitable scenarios, respectively. Furthermore, the calculated sustainable yield volume is contrasted with the total water storage figures documented for 50 countries throughout Africa. The outcomes illustrate that our calculated annual sustainable yield equates to roughly 0.02%, 0.1%, and 0.17% of the reported groundwater storage across the entire continent. Based on the estimated long-term average sustainable yield and the reported total water storage at the national level, our conclusion is that the accessible groundwater resources could potentially satisfy the current water requirements of both humans and the environment in African countries. This study offers the first model-based estimation of groundwater availability across Africa, potentially serving as a catalyst to inspire further progress toward adopting more sustainable approaches to groundwater usage on the continent.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
536 _ _ |a Verbundvorhaben H2-Atlas: Potentialatlas Grüner Wasserstoff in Afrika - Eine technologische, ökologische und sozioökonomische Machbarkeitsstudie (03EW0001A)
|0 G:(BMBF)03EW0001A
|c 03EW0001A
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Oloruntoba, Bamidele
|0 P:(DE-Juel1)180403
|b 1
700 1 _ |a Montzka, Carsten
|0 P:(DE-Juel1)129506
|b 2
700 1 _ |a Vereecken, Harry
|0 P:(DE-Juel1)129549
|b 3
|u fzj
700 1 _ |a Hendricks Franssen, Harrie-Jan
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.1016/j.jhydrol.2023.130288
|g Vol. 626, p. 130288 -
|0 PERI:(DE-600)1473173-3
|n Part B
|p 130288 -
|t Journal of hydrology
|v 626
|y 2023
|x 0022-1694
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1020235/files/Bayat%20et%20al%202023.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1020235/files/Bayat%20et%20al%202023.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1020235/files/Bayat%20et%20al%202023.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1020235/files/Bayat%20et%20al%202023.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1020235/files/Bayat%20et%20al%202023.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1020235
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)177038
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)180403
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129506
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129549
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-28
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J HYDROL : 2022
|d 2023-08-28
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J HYDROL : 2022
|d 2023-08-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-28
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-08-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-28
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21