001     1020240
005     20240226075245.0
024 7 _ |a 10.1103/PhysRevLett.130.246701
|2 doi
024 7 _ |a 0031-9007
|2 ISSN
024 7 _ |a 1092-0145
|2 ISSN
024 7 _ |a 1079-7114
|2 ISSN
024 7 _ |a 10.34734/FZJ-2023-05907
|2 datacite_doi
024 7 _ |a 37390424
|2 pmid
024 7 _ |a WOS:001019609700013
|2 WOS
037 _ _ |a FZJ-2023-05907
082 _ _ |a 530
100 1 _ |a Go, Dongwook
|0 P:(DE-Juel1)178993
|b 0
|e Corresponding author
245 _ _ |a Long-Range Orbital Torque by Momentum-Space Hotspots
260 _ _ |a College Park, Md.
|c 2023
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1704263970_16172
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a While it is often assumed that the orbital response is suppressed and short ranged due to strong crystal field potential and orbital quenching, we show that the orbital response can be remarkably long ranged in ferromagnets. In a bilayer consisting of a nonmagnet and a ferromagnet, spin injection from the interface results in spin accumulation and torque in the ferromagnet, which rapidly oscillate and decay by spin dephasing. In contrast, even when an external electric field is applied only on the nonmagnet, we find substantially long-ranged induced orbital angular momentum in the ferromagnet, which can go far beyond the spin dephasing length. This unusual feature is attributed to nearly degenerate orbital characters imposed by the crystal symmetry, which form hotspots for the intrinsic orbital response. Because only the states near the hotspots contribute dominantly, the induced orbital angular momentum does not exhibit destructive interference among states with different momentum as in the case of the spin dephasing. This gives rise to a distinct type of orbital torque on the magnetization, increasing with the thickness of the ferromagnet. Such behavior may serve as critical long-sought evidence of orbital transport to be directly tested in experiments. Our findings open the possibility of using long-range orbital response in orbitronic device applications.
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
536 _ _ |a DFG project 437337265 - Spin+Optik: Theoretischer Entwurf von antiferromagnetischer Optospintronik (A11) (437337265)
|0 G:(GEPRIS)437337265
|c 437337265
|x 1
536 _ _ |a DFG project 444844585 - Statische und dynamische Kopplung von Gitter- und elektronischen Freiheitsgraden in magnetisch geordneten Übergangsmetalldichalkogenieden (B06) (444844585)
|0 G:(GEPRIS)444844585
|c 444844585
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Jo, Daegeun
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Kim, Kyoung-Whan
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Lee, Soogil
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Kang, Min-Gu
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Park, Byong-Guk
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Blügel, Stefan
|0 P:(DE-Juel1)130548
|b 6
700 1 _ |a Lee, Hyun-Woo
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Mokrousov, Yuriy
|0 P:(DE-Juel1)130848
|b 8
|u fzj
773 _ _ |a 10.1103/PhysRevLett.130.246701
|g Vol. 130, no. 24, p. 246701
|0 PERI:(DE-600)1472655-5
|n 24
|p 246701
|t Physical review letters
|v 130
|y 2023
|x 0031-9007
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1020240/files/PhysRevLett.130.246701.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1020240/files/PhysRevLett.130.246701.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1020240/files/PhysRevLett.130.246701.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1020240/files/PhysRevLett.130.246701.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1020240/files/PhysRevLett.130.246701.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1020240
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)178993
910 1 _ |a Department of Physics, Pohang University of Science and Technology, Pohang 37673, Korea
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Center for Spintronics, Korea Institute of Science and Technology, Seoul 02792, Korea
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Department of Materials Science and Engineering and KI for Nanocentury, KAIST, Daejeon 34141, Korea
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Department of Materials Science and Engineering and KI for Nanocentury, KAIST, Daejeon 34141, Korea
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Department of Materials Science and Engineering and KI for Nanocentury, KAIST, Daejeon 34141, Korea
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)130548
910 1 _ |a Department of Physics, Pohang University of Science and Technology, Pohang 37673, Korea
|0 I:(DE-HGF)0
|b 7
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)130848
910 1 _ |a Institute of Physics, Johannes Gutenberg University Mainz, 55099 Mainz, Germany
|0 I:(DE-HGF)0
|b 8
|6 P:(DE-Juel1)130848
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-21
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-21
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-21
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-21
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0571
|2 StatID
|b SCOAP3 sponsored Journal
|d 2023-10-21
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV LETT : 2022
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-21
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b PHYS REV LETT : 2022
|d 2023-10-21
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-10-21
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-21
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 2
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a I:(DE-82)080009_20140620
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21