001020241 001__ 1020241
001020241 005__ 20240226075245.0
001020241 0247_ $$2doi$$a10.1038/s42005-023-01139-7
001020241 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-05908
001020241 0247_ $$2WOS$$aWOS:000926732800001
001020241 037__ $$aFZJ-2023-05908
001020241 082__ $$a530
001020241 1001_ $$0P:(DE-HGF)0$$aHayashi, Hiroki$$b0
001020241 245__ $$aObservation of long-range orbital transport and giant orbital torque
001020241 260__ $$aLondon$$bSpringer Nature$$c2023
001020241 3367_ $$2DRIVER$$aarticle
001020241 3367_ $$2DataCite$$aOutput Types/Journal article
001020241 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1704276096_15364
001020241 3367_ $$2BibTeX$$aARTICLE
001020241 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001020241 3367_ $$00$$2EndNote$$aJournal Article
001020241 520__ $$aModern spintronics relies on the generation of spin currents through spin-orbit coupling. The spin-current generation has been believed to be triggered by current-induced orbital dynamics, which governs the angular momentum transfer from the lattice to the electrons in solids. The fundamental role of the orbital response in the angular momentum dynamics suggests the importance of the orbital counterpart of spin currents: orbital currents. However, evidence for its existence has been elusive. Here, we demonstrate the generation of giant orbital currents and uncover fundamental features of the orbital response. We experimentally and theoretically show that orbital currents propagate over longer distances than spin currents by more than an order of magnitude in a ferromagnet and nonmagnets. Furthermore, we find that the orbital current enables electric manipulation of magnetization with efficiencies significantly higher than the spin counterpart. These findings open the door to orbitronics that exploits orbital transport and spin-orbital coupled dynamics in solid-state devices.
001020241 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001020241 536__ $$0G:(GEPRIS)437337265$$aDFG project 437337265 - Spin+Optik: Theoretischer Entwurf von antiferromagnetischer Optospintronik (A11) (437337265)$$c437337265$$x1
001020241 536__ $$0G:(GEPRIS)444844585$$aDFG project 444844585 - Statische und dynamische Kopplung von Gitter- und elektronischen Freiheitsgraden in magnetisch geordneten Übergangsmetalldichalkogenieden (B06) (444844585)$$c444844585$$x2
001020241 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001020241 7001_ $$0P:(DE-HGF)0$$aJo, Daegeun$$b1
001020241 7001_ $$0P:(DE-Juel1)178993$$aGo, Dongwook$$b2$$ufzj
001020241 7001_ $$0P:(DE-HGF)0$$aGao, Tenghua$$b3
001020241 7001_ $$0P:(DE-HGF)0$$aHaku, Satoshi$$b4
001020241 7001_ $$0P:(DE-Juel1)130848$$aMokrousov, Yuriy$$b5
001020241 7001_ $$0P:(DE-HGF)0$$aLee, Hyun-Woo$$b6
001020241 7001_ $$0P:(DE-HGF)0$$aAndo, Kazuya$$b7$$eCorresponding author
001020241 773__ $$0PERI:(DE-600)2921913-9$$a10.1038/s42005-023-01139-7$$gVol. 6, no. 1, p. 32$$n1$$p32$$tCommunications Physics$$v6$$x2399-3650$$y2023
001020241 8564_ $$uhttps://juser.fz-juelich.de/record/1020241/files/s42005-023-01139-7.pdf$$yOpenAccess
001020241 8564_ $$uhttps://juser.fz-juelich.de/record/1020241/files/s42005-023-01139-7.gif?subformat=icon$$xicon$$yOpenAccess
001020241 8564_ $$uhttps://juser.fz-juelich.de/record/1020241/files/s42005-023-01139-7.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001020241 8564_ $$uhttps://juser.fz-juelich.de/record/1020241/files/s42005-023-01139-7.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001020241 8564_ $$uhttps://juser.fz-juelich.de/record/1020241/files/s42005-023-01139-7.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001020241 909CO $$ooai:juser.fz-juelich.de:1020241$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001020241 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Applied Physics and Physico-Informatics, Keio University, Yokohama, 223-8522, Japan$$b0
001020241 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Physics, Pohang University of Science and Technology, Pohang, 37673, Korea$$b1
001020241 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178993$$aForschungszentrum Jülich$$b2$$kFZJ
001020241 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Applied Physics and Physico-Informatics, Keio University, Yokohama, 223-8522, Japan$$b3
001020241 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Keio Institute of Pure and Applied Sciences, Keio University, Yokohama, 223-8522, Japan$$b3
001020241 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Applied Physics and Physico-Informatics, Keio University, Yokohama, 223-8522, Japan$$b4
001020241 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130848$$aForschungszentrum Jülich$$b5$$kFZJ
001020241 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Physics, Pohang University of Science and Technology, Pohang, 37673, Korea$$b6
001020241 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Applied Physics and Physico-Informatics, Keio University, Yokohama, 223-8522, Japan$$b7
001020241 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Keio Institute of Pure and Applied Sciences, Keio University, Yokohama, 223-8522, Japan$$b7
001020241 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Center for Spintronics Research Network, Keio University, Yokohama, 223-8522, Japan$$b7
001020241 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001020241 9141_ $$y2023
001020241 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001020241 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001020241 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOMMUN PHYS-UK : 2022$$d2023-10-27
001020241 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-27
001020241 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-27
001020241 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-05-02T09:13:12Z
001020241 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-05-02T09:13:12Z
001020241 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-05-02T09:13:12Z
001020241 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-27
001020241 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-27
001020241 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-27
001020241 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-27
001020241 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-27
001020241 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCOMMUN PHYS-UK : 2022$$d2023-10-27
001020241 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
001020241 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x1
001020241 980__ $$ajournal
001020241 980__ $$aVDB
001020241 980__ $$aUNRESTRICTED
001020241 980__ $$aI:(DE-Juel1)PGI-1-20110106
001020241 980__ $$aI:(DE-Juel1)IAS-1-20090406
001020241 9801_ $$aFullTexts