Hauptseite > Publikationsdatenbank > Observation of long-range orbital transport and giant orbital torque > print |
001 | 1020241 | ||
005 | 20240226075245.0 | ||
024 | 7 | _ | |a 10.1038/s42005-023-01139-7 |2 doi |
024 | 7 | _ | |a 10.34734/FZJ-2023-05908 |2 datacite_doi |
024 | 7 | _ | |a WOS:000926732800001 |2 WOS |
037 | _ | _ | |a FZJ-2023-05908 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Hayashi, Hiroki |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Observation of long-range orbital transport and giant orbital torque |
260 | _ | _ | |a London |c 2023 |b Springer Nature |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1704276096_15364 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Modern spintronics relies on the generation of spin currents through spin-orbit coupling. The spin-current generation has been believed to be triggered by current-induced orbital dynamics, which governs the angular momentum transfer from the lattice to the electrons in solids. The fundamental role of the orbital response in the angular momentum dynamics suggests the importance of the orbital counterpart of spin currents: orbital currents. However, evidence for its existence has been elusive. Here, we demonstrate the generation of giant orbital currents and uncover fundamental features of the orbital response. We experimentally and theoretically show that orbital currents propagate over longer distances than spin currents by more than an order of magnitude in a ferromagnet and nonmagnets. Furthermore, we find that the orbital current enables electric manipulation of magnetization with efficiencies significantly higher than the spin counterpart. These findings open the door to orbitronics that exploits orbital transport and spin-orbital coupled dynamics in solid-state devices. |
536 | _ | _ | |a 5211 - Topological Matter (POF4-521) |0 G:(DE-HGF)POF4-5211 |c POF4-521 |f POF IV |x 0 |
536 | _ | _ | |a DFG project 437337265 - Spin+Optik: Theoretischer Entwurf von antiferromagnetischer Optospintronik (A11) (437337265) |0 G:(GEPRIS)437337265 |c 437337265 |x 1 |
536 | _ | _ | |a DFG project 444844585 - Statische und dynamische Kopplung von Gitter- und elektronischen Freiheitsgraden in magnetisch geordneten Übergangsmetalldichalkogenieden (B06) (444844585) |0 G:(GEPRIS)444844585 |c 444844585 |x 2 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Jo, Daegeun |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Go, Dongwook |0 P:(DE-Juel1)178993 |b 2 |u fzj |
700 | 1 | _ | |a Gao, Tenghua |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Haku, Satoshi |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Mokrousov, Yuriy |0 P:(DE-Juel1)130848 |b 5 |
700 | 1 | _ | |a Lee, Hyun-Woo |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Ando, Kazuya |0 P:(DE-HGF)0 |b 7 |e Corresponding author |
773 | _ | _ | |a 10.1038/s42005-023-01139-7 |g Vol. 6, no. 1, p. 32 |0 PERI:(DE-600)2921913-9 |n 1 |p 32 |t Communications Physics |v 6 |y 2023 |x 2399-3650 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1020241/files/s42005-023-01139-7.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1020241/files/s42005-023-01139-7.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1020241/files/s42005-023-01139-7.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1020241/files/s42005-023-01139-7.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1020241/files/s42005-023-01139-7.jpg?subformat=icon-640 |
909 | C | O | |o oai:juser.fz-juelich.de:1020241 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Department of Applied Physics and Physico-Informatics, Keio University, Yokohama, 223-8522, Japan |0 I:(DE-HGF)0 |b 0 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Department of Physics, Pohang University of Science and Technology, Pohang, 37673, Korea |0 I:(DE-HGF)0 |b 1 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)178993 |
910 | 1 | _ | |a Department of Applied Physics and Physico-Informatics, Keio University, Yokohama, 223-8522, Japan |0 I:(DE-HGF)0 |b 3 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Keio Institute of Pure and Applied Sciences, Keio University, Yokohama, 223-8522, Japan |0 I:(DE-HGF)0 |b 3 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Department of Applied Physics and Physico-Informatics, Keio University, Yokohama, 223-8522, Japan |0 I:(DE-HGF)0 |b 4 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)130848 |
910 | 1 | _ | |a Department of Physics, Pohang University of Science and Technology, Pohang, 37673, Korea |0 I:(DE-HGF)0 |b 6 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Department of Applied Physics and Physico-Informatics, Keio University, Yokohama, 223-8522, Japan |0 I:(DE-HGF)0 |b 7 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Keio Institute of Pure and Applied Sciences, Keio University, Yokohama, 223-8522, Japan |0 I:(DE-HGF)0 |b 7 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Center for Spintronics Research Network, Keio University, Yokohama, 223-8522, Japan |0 I:(DE-HGF)0 |b 7 |6 P:(DE-HGF)0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-521 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Materials |9 G:(DE-HGF)POF4-5211 |x 0 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b COMMUN PHYS-UK : 2022 |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2023-05-02T09:13:12Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2023-05-02T09:13:12Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2023-05-02T09:13:12Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-10-27 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-10-27 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b COMMUN PHYS-UK : 2022 |d 2023-10-27 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-1-20110106 |k PGI-1 |l Quanten-Theorie der Materialien |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-1-20090406 |k IAS-1 |l Quanten-Theorie der Materialien |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-1-20110106 |
980 | _ | _ | |a I:(DE-Juel1)IAS-1-20090406 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|