001020242 001__ 1020242
001020242 005__ 20240226075245.0
001020242 0247_ $$2doi$$a10.1038/s41565-023-01470-8
001020242 0247_ $$2ISSN$$a1748-3387
001020242 0247_ $$2ISSN$$a1748-3395
001020242 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-05909
001020242 0247_ $$2pmid$$a37550573
001020242 0247_ $$2WOS$$aWOS:001043662300004
001020242 037__ $$aFZJ-2023-05909
001020242 082__ $$a600
001020242 1001_ $$0P:(DE-HGF)0$$aSeifert, Tom S.$$b0$$eCorresponding author
001020242 245__ $$aTime-domain observation of ballistic orbital-angular-momentum currents with giant relaxation length in tungsten
001020242 260__ $$aLondon [u.a.]$$bNature Publishing Group$$c2023
001020242 3367_ $$2DRIVER$$aarticle
001020242 3367_ $$2DataCite$$aOutput Types/Journal article
001020242 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1704205072_26655
001020242 3367_ $$2BibTeX$$aARTICLE
001020242 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001020242 3367_ $$00$$2EndNote$$aJournal Article
001020242 520__ $$aThe emerging field of orbitronics exploits the electron orbital momentum L. Compared to spin-polarized electrons, L may allow the transfer of magnetic information with considerably higher density over longer distances in more materials. However, direct experimental observation of L currents, their extended propagation lengths and their conversion into charge currents has remained challenging. Here, we optically trigger ultrafast angular-momentum transport in Ni|W|SiO2 thin-film stacks. The resulting terahertz charge-current bursts exhibit a marked delay and width that grow linearly with the W thickness. We consistently ascribe these observations to a ballistic L current from Ni through W with a giant decay length (~80 nm) and low velocity (~0.1 nm fs−1). At the W/SiO2 interface, the L flow is efficiently converted into a charge current by the inverse orbital Rashba–Edelstein effect, consistent with ab initio calculations. Our findings establish orbitronic materials with long-distance ballistic L transport as possible candidates for future ultrafast devices and an approach to discriminate Hall-like and Rashba–Edelstein-like conversion processes.
001020242 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001020242 536__ $$0G:(GEPRIS)437337265$$aDFG project 437337265 - Spin+Optik: Theoretischer Entwurf von antiferromagnetischer Optospintronik (A11) (437337265)$$c437337265$$x1
001020242 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001020242 7001_ $$0P:(DE-Juel1)178993$$aGo, Dongwook$$b1
001020242 7001_ $$0P:(DE-HGF)0$$aHayashi, Hiroki$$b2
001020242 7001_ $$0P:(DE-HGF)0$$aRouzegar, Reza$$b3
001020242 7001_ $$0P:(DE-Juel1)130643$$aFreimuth, Frank$$b4$$ufzj
001020242 7001_ $$0P:(DE-HGF)0$$aAndo, Kazuya$$b5
001020242 7001_ $$0P:(DE-Juel1)130848$$aMokrousov, Yuriy$$b6
001020242 7001_ $$0P:(DE-HGF)0$$aKampfrath, Tobias$$b7
001020242 773__ $$0PERI:(DE-600)2254964-X$$a10.1038/s41565-023-01470-8$$gVol. 18, no. 10, p. 1132 - 1138$$n10$$p1132 - 1138$$tNature nanotechnology$$v18$$x1748-3387$$y2023
001020242 8564_ $$uhttps://juser.fz-juelich.de/record/1020242/files/s41565-023-01470-8.pdf$$yOpenAccess
001020242 8564_ $$uhttps://juser.fz-juelich.de/record/1020242/files/s41565-023-01470-8.gif?subformat=icon$$xicon$$yOpenAccess
001020242 8564_ $$uhttps://juser.fz-juelich.de/record/1020242/files/s41565-023-01470-8.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001020242 8564_ $$uhttps://juser.fz-juelich.de/record/1020242/files/s41565-023-01470-8.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001020242 8564_ $$uhttps://juser.fz-juelich.de/record/1020242/files/s41565-023-01470-8.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001020242 909CO $$ooai:juser.fz-juelich.de:1020242$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001020242 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Physics, Freie Universität Berlin, Berlin, Germany$$b0
001020242 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Physical Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany$$b0
001020242 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178993$$aForschungszentrum Jülich$$b1$$kFZJ
001020242 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Applied Physics and Physico-Informatics, Keio University, Yokohama, Japan$$b2
001020242 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Keio Institute of Pure and Applied Sciences, Keio University, Yokohama, Japan$$b2
001020242 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Physics, Freie Universität Berlin, Berlin, Germany$$b3
001020242 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Physical Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany$$b3
001020242 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130643$$aForschungszentrum Jülich$$b4$$kFZJ
001020242 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)130643$$a Keio Institute of Pure and Applied Sciences, Keio University, Yokohama, Japan$$b4
001020242 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Keio Institute of Pure and Applied Sciences, Keio University, Yokohama, Japan$$b5
001020242 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Applied Physics and Physico-Informatics, Keio University, Yokohama, Japan$$b5
001020242 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Center for Spintronics Research Network, Keio University, Yokohama, Japan$$b5
001020242 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130848$$aForschungszentrum Jülich$$b6$$kFZJ
001020242 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Physical Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany$$b7
001020242 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Physics, Freie Universität Berlin, Berlin, Germany$$b7
001020242 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001020242 9141_ $$y2023
001020242 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001020242 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001020242 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-08-25$$wger
001020242 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-25
001020242 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-25
001020242 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-25
001020242 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-08-25
001020242 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-25
001020242 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT NANOTECHNOL : 2022$$d2023-08-25
001020242 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-25
001020242 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-25
001020242 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-25
001020242 915__ $$0StatID:(DE-HGF)9930$$2StatID$$aIF >= 30$$bNAT NANOTECHNOL : 2022$$d2023-08-25
001020242 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
001020242 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x1
001020242 980__ $$ajournal
001020242 980__ $$aVDB
001020242 980__ $$aUNRESTRICTED
001020242 980__ $$aI:(DE-Juel1)PGI-1-20110106
001020242 980__ $$aI:(DE-Juel1)IAS-1-20090406
001020242 9801_ $$aFullTexts