001     1020242
005     20240226075245.0
024 7 _ |a 10.1038/s41565-023-01470-8
|2 doi
024 7 _ |a 1748-3387
|2 ISSN
024 7 _ |a 1748-3395
|2 ISSN
024 7 _ |a 10.34734/FZJ-2023-05909
|2 datacite_doi
024 7 _ |a 37550573
|2 pmid
024 7 _ |a WOS:001043662300004
|2 WOS
037 _ _ |a FZJ-2023-05909
082 _ _ |a 600
100 1 _ |a Seifert, Tom S.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Time-domain observation of ballistic orbital-angular-momentum currents with giant relaxation length in tungsten
260 _ _ |a London [u.a.]
|c 2023
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1704205072_26655
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The emerging field of orbitronics exploits the electron orbital momentum L. Compared to spin-polarized electrons, L may allow the transfer of magnetic information with considerably higher density over longer distances in more materials. However, direct experimental observation of L currents, their extended propagation lengths and their conversion into charge currents has remained challenging. Here, we optically trigger ultrafast angular-momentum transport in Ni|W|SiO2 thin-film stacks. The resulting terahertz charge-current bursts exhibit a marked delay and width that grow linearly with the W thickness. We consistently ascribe these observations to a ballistic L current from Ni through W with a giant decay length (~80 nm) and low velocity (~0.1 nm fs−1). At the W/SiO2 interface, the L flow is efficiently converted into a charge current by the inverse orbital Rashba–Edelstein effect, consistent with ab initio calculations. Our findings establish orbitronic materials with long-distance ballistic L transport as possible candidates for future ultrafast devices and an approach to discriminate Hall-like and Rashba–Edelstein-like conversion processes.
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
536 _ _ |a DFG project 437337265 - Spin+Optik: Theoretischer Entwurf von antiferromagnetischer Optospintronik (A11) (437337265)
|0 G:(GEPRIS)437337265
|c 437337265
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Go, Dongwook
|0 P:(DE-Juel1)178993
|b 1
700 1 _ |a Hayashi, Hiroki
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Rouzegar, Reza
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Freimuth, Frank
|0 P:(DE-Juel1)130643
|b 4
|u fzj
700 1 _ |a Ando, Kazuya
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Mokrousov, Yuriy
|0 P:(DE-Juel1)130848
|b 6
700 1 _ |a Kampfrath, Tobias
|0 P:(DE-HGF)0
|b 7
773 _ _ |a 10.1038/s41565-023-01470-8
|g Vol. 18, no. 10, p. 1132 - 1138
|0 PERI:(DE-600)2254964-X
|n 10
|p 1132 - 1138
|t Nature nanotechnology
|v 18
|y 2023
|x 1748-3387
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1020242/files/s41565-023-01470-8.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1020242/files/s41565-023-01470-8.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1020242/files/s41565-023-01470-8.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1020242/files/s41565-023-01470-8.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1020242/files/s41565-023-01470-8.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1020242
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Department of Physics, Freie Universität Berlin, Berlin, Germany
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Department of Physical Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)178993
910 1 _ |a Department of Applied Physics and Physico-Informatics, Keio University, Yokohama, Japan
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Keio Institute of Pure and Applied Sciences, Keio University, Yokohama, Japan
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Department of Physics, Freie Universität Berlin, Berlin, Germany
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Department of Physical Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130643
910 1 _ |a Keio Institute of Pure and Applied Sciences, Keio University, Yokohama, Japan
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-Juel1)130643
910 1 _ |a Keio Institute of Pure and Applied Sciences, Keio University, Yokohama, Japan
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Department of Applied Physics and Physico-Informatics, Keio University, Yokohama, Japan
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Center for Spintronics Research Network, Keio University, Yokohama, Japan
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)130848
910 1 _ |a Department of Physical Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany
|0 I:(DE-HGF)0
|b 7
|6 P:(DE-HGF)0
910 1 _ |a Department of Physics, Freie Universität Berlin, Berlin, Germany
|0 I:(DE-HGF)0
|b 7
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-08-25
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-25
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT NANOTECHNOL : 2022
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-25
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-25
915 _ _ |a IF >= 30
|0 StatID:(DE-HGF)9930
|2 StatID
|b NAT NANOTECHNOL : 2022
|d 2023-08-25
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21