Home > Publications database > Time-domain observation of ballistic orbital-angular-momentum currents with giant relaxation length in tungsten > print |
001 | 1020242 | ||
005 | 20240226075245.0 | ||
024 | 7 | _ | |a 10.1038/s41565-023-01470-8 |2 doi |
024 | 7 | _ | |a 1748-3387 |2 ISSN |
024 | 7 | _ | |a 1748-3395 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2023-05909 |2 datacite_doi |
024 | 7 | _ | |a 37550573 |2 pmid |
024 | 7 | _ | |a WOS:001043662300004 |2 WOS |
037 | _ | _ | |a FZJ-2023-05909 |
082 | _ | _ | |a 600 |
100 | 1 | _ | |a Seifert, Tom S. |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Time-domain observation of ballistic orbital-angular-momentum currents with giant relaxation length in tungsten |
260 | _ | _ | |a London [u.a.] |c 2023 |b Nature Publishing Group |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1704205072_26655 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The emerging field of orbitronics exploits the electron orbital momentum L. Compared to spin-polarized electrons, L may allow the transfer of magnetic information with considerably higher density over longer distances in more materials. However, direct experimental observation of L currents, their extended propagation lengths and their conversion into charge currents has remained challenging. Here, we optically trigger ultrafast angular-momentum transport in Ni|W|SiO2 thin-film stacks. The resulting terahertz charge-current bursts exhibit a marked delay and width that grow linearly with the W thickness. We consistently ascribe these observations to a ballistic L current from Ni through W with a giant decay length (~80 nm) and low velocity (~0.1 nm fs−1). At the W/SiO2 interface, the L flow is efficiently converted into a charge current by the inverse orbital Rashba–Edelstein effect, consistent with ab initio calculations. Our findings establish orbitronic materials with long-distance ballistic L transport as possible candidates for future ultrafast devices and an approach to discriminate Hall-like and Rashba–Edelstein-like conversion processes. |
536 | _ | _ | |a 5211 - Topological Matter (POF4-521) |0 G:(DE-HGF)POF4-5211 |c POF4-521 |f POF IV |x 0 |
536 | _ | _ | |a DFG project 437337265 - Spin+Optik: Theoretischer Entwurf von antiferromagnetischer Optospintronik (A11) (437337265) |0 G:(GEPRIS)437337265 |c 437337265 |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Go, Dongwook |0 P:(DE-Juel1)178993 |b 1 |
700 | 1 | _ | |a Hayashi, Hiroki |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Rouzegar, Reza |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Freimuth, Frank |0 P:(DE-Juel1)130643 |b 4 |u fzj |
700 | 1 | _ | |a Ando, Kazuya |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Mokrousov, Yuriy |0 P:(DE-Juel1)130848 |b 6 |
700 | 1 | _ | |a Kampfrath, Tobias |0 P:(DE-HGF)0 |b 7 |
773 | _ | _ | |a 10.1038/s41565-023-01470-8 |g Vol. 18, no. 10, p. 1132 - 1138 |0 PERI:(DE-600)2254964-X |n 10 |p 1132 - 1138 |t Nature nanotechnology |v 18 |y 2023 |x 1748-3387 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1020242/files/s41565-023-01470-8.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1020242/files/s41565-023-01470-8.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1020242/files/s41565-023-01470-8.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1020242/files/s41565-023-01470-8.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1020242/files/s41565-023-01470-8.jpg?subformat=icon-640 |
909 | C | O | |o oai:juser.fz-juelich.de:1020242 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Department of Physics, Freie Universität Berlin, Berlin, Germany |0 I:(DE-HGF)0 |b 0 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Department of Physical Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany |0 I:(DE-HGF)0 |b 0 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)178993 |
910 | 1 | _ | |a Department of Applied Physics and Physico-Informatics, Keio University, Yokohama, Japan |0 I:(DE-HGF)0 |b 2 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Keio Institute of Pure and Applied Sciences, Keio University, Yokohama, Japan |0 I:(DE-HGF)0 |b 2 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Department of Physics, Freie Universität Berlin, Berlin, Germany |0 I:(DE-HGF)0 |b 3 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Department of Physical Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany |0 I:(DE-HGF)0 |b 3 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)130643 |
910 | 1 | _ | |a Keio Institute of Pure and Applied Sciences, Keio University, Yokohama, Japan |0 I:(DE-HGF)0 |b 4 |6 P:(DE-Juel1)130643 |
910 | 1 | _ | |a Keio Institute of Pure and Applied Sciences, Keio University, Yokohama, Japan |0 I:(DE-HGF)0 |b 5 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Department of Applied Physics and Physico-Informatics, Keio University, Yokohama, Japan |0 I:(DE-HGF)0 |b 5 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Center for Spintronics Research Network, Keio University, Yokohama, Japan |0 I:(DE-HGF)0 |b 5 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)130848 |
910 | 1 | _ | |a Department of Physical Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany |0 I:(DE-HGF)0 |b 7 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Department of Physics, Freie Universität Berlin, Berlin, Germany |0 I:(DE-HGF)0 |b 7 |6 P:(DE-HGF)0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-521 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Materials |9 G:(DE-HGF)POF4-5211 |x 0 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2023-08-25 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-08-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-08-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2023-08-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-08-25 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NAT NANOTECHNOL : 2022 |d 2023-08-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-08-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-08-25 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-08-25 |
915 | _ | _ | |a IF >= 30 |0 StatID:(DE-HGF)9930 |2 StatID |b NAT NANOTECHNOL : 2022 |d 2023-08-25 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-1-20110106 |k PGI-1 |l Quanten-Theorie der Materialien |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-1-20090406 |k IAS-1 |l Quanten-Theorie der Materialien |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-1-20110106 |
980 | _ | _ | |a I:(DE-Juel1)IAS-1-20090406 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|