001     1020263
005     20250204113744.0
024 7 _ |a 10.1001/jamanetworkopen.2023.56787
|2 doi
024 7 _ |a 10.34734/FZJ-2024-00019
|2 datacite_doi
024 7 _ |a 38372997
|2 pmid
024 7 _ |a WOS:001174447500006
|2 WOS
037 _ _ |a FZJ-2024-00019
082 _ _ |a 610
100 1 _ |a Dukart, Jürgen
|0 P:(DE-Juel1)177727
|b 0
|e Corresponding author
245 _ _ |a Lifetime exposure to depression and neuroimaging measures of brain structure and function
260 _ _ |a Chicago, Ill.
|c 2024
|b American Medical Association
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1711346098_7892
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Importance Despite decades of neuroimaging studies reporting brain structural and functional alterations in depression, discrepancies in findings across studies and limited convergence across meta-analyses have raised questions about the consistency and robustness of the observed brain phenotypes.Objective To investigate the associations between 6 operational criteria of lifetime exposure to depression and functional and structural neuroimaging measures.Design, Setting, and Participants This cross-sectional study analyzed data from a UK Biobank cohort of individuals aged 45 to 80 years who were enrolled between January 1, 2014, and December 31, 2018. Participants included individuals with a lifetime exposure to depression and matched healthy controls without indications of psychosis, mental illness, behavior disorder, and disease of the nervous system. Six operational criteria of lifetime exposure to depression were evaluated: help seeking for depression; self-reported depression; antidepressant use; depression definition by Smith et al; hospital International Statistical Classification of Diseases and Related Health Problems, Tenth Revision (ICD-10) diagnosis codes F32 and F33; and Composite International Diagnostic Interview Short Form score. Six increasingly restrictive depression definitions and groups were defined based on the 6 depression criteria, ranging from meeting only 1 criterion to meeting all 6 criteria. Data were analyzed between January and October 2022.Main Outcomes and Measures Functional measures were calculated using voxel-wise fractional amplitude of low-frequency fluctuation (fALFF), global correlation (GCOR), and local correlation (LCOR). Structural measures were calculated using gray matter volume (GMV).Results The study included 20 484 individuals with lifetime depression (12 645 females [61.7%]; mean [SD] age, 63.91 [7.60] years) and 25 462 healthy controls (14 078 males [55.3%]; mean [SD] age, 65.05 [7.8] years). Across all depression criteria, individuals with lifetime depression displayed regionally consistent decreases in fALFF, LCOR, and GCOR (Cohen d range, −0.53 [95% CI, −0.88 to −0.15] to −0.04 [95% CI, −0.07 to −0.01]) but not in GMV (Cohen d range, −0.47 [95 % CI, −0.75 to −0.12] to 0.26 [95% CI, 0.15-0.37]). Hospital ICD-10 diagnosis codes F32 and F33 (median [IQR] difference in effect sizes, −0.14 [−0.17 to −0.11]) and antidepressant use (median [IQR] difference in effect sizes, −0.12 [−0.16 to −0.10]) were criteria associated with the most pronounced alterations.Conclusions and Relevance Results of this cross-sectional study indicate that lifetime exposure to depression was associated with robust functional changes, with a more restrictive depression definition revealing more pronounced alterations. Different inclusion criteria for depression may be associated with the substantial variation in imaging findings reported in the literature.
536 _ _ |a 5253 - Neuroimaging (POF4-525)
|0 G:(DE-HGF)POF4-5253
|c POF4-525
|f POF IV
|x 0
700 1 _ |a Wang, Xinyi
|0 P:(DE-Juel1)190115
|b 1
700 1 _ |a Hoffstaedter, Felix
|0 P:(DE-Juel1)131684
|b 2
700 1 _ |a Kasper, Jan
|0 P:(DE-Juel1)184653
|b 3
700 1 _ |a Eickhoff, Simon
|0 P:(DE-Juel1)131678
|b 4
700 1 _ |a Patil, Kaustubh
|0 P:(DE-Juel1)172843
|b 5
773 _ _ |a 10.1001/jamanetworkopen.2023.56787
|0 PERI:(DE-600)2931249-8
|n 2
|p e2356787
|t JAMA network open
|v 7
|y 2024
|x 2574-3805
856 4 _ |u https://juser.fz-juelich.de/record/1020263/files/Invoice_APC600488215.pdf
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/1020263/files/Invoice_APC600488215.gif?subformat=icon
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/1020263/files/Invoice_APC600488215.jpg?subformat=icon-1440
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/1020263/files/Invoice_APC600488215.jpg?subformat=icon-180
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/1020263/files/Invoice_APC600488215.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1020263/files/wang_2024_oi_231673_1707777786.93419.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1020263/files/wang_2024_oi_231673_1707777786.93419.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1020263/files/wang_2024_oi_231673_1707777786.93419.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1020263/files/wang_2024_oi_231673_1707777786.93419.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1020263/files/wang_2024_oi_231673_1707777786.93419.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1020263
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)177727
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-Juel1)177727
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)190115
910 1 _ |a School of Biological Sciences and Medical Engineering, Child Development, and Learning Science, Key Laboratory of Ministry of Education, Southeast University, Nanjing, China
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-Juel1)190115
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131684
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-Juel1)131684
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)184653
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-Juel1)184653
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131678
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-Juel1)131678
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)172843
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-Juel1)172843
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5253
|x 0
914 1 _ |y 2024
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a DOAJ Journal
|0 PC:(DE-HGF)0003
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-27
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-10-18T13:36:16Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-10-18T13:36:16Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-27
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2021-10-18T13:36:16Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b JAMA NETW OPEN : 2022
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-09
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b JAMA NETW OPEN : 2022
|d 2024-12-09
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21