001     1020280
005     20241028095915.0
024 7 _ |2 datacite_doi
|a 10.34734/FZJ-2024-00036
024 7 _ |2 DOI
|a 10.26868/25222708.2023.1196
037 _ _ |a FZJ-2024-00036
100 1 _ |0 P:(DE-Juel1)179375
|a Stock, Jan
|b 0
|e Corresponding author
|u fzj
111 2 _ |a 18th Conference of International Building Performance Simulation Assocation (IBPSA)
|c Shanghai
|d 2023-09-04 - 2023-09-06
|g BS2023
|w China
245 _ _ |a Method development for lowering supply temperatures in existing buildingsusing minimal building information and demand measurement data
250 _ _ |a 18th
260 _ _ |c 2023
300 _ _ |a 486 - 493
336 7 _ |2 ORCID
|a CONFERENCE_PAPER
336 7 _ |0 33
|2 EndNote
|a Conference Paper
336 7 _ |2 BibTeX
|a INPROCEEDINGS
336 7 _ |2 DRIVER
|a conferenceObject
336 7 _ |2 DataCite
|a Output Types/Conference Paper
336 7 _ |0 PUB:(DE-HGF)8
|2 PUB:(DE-HGF)
|a Contribution to a conference proceedings
|b contrib
|m contrib
|s 1704267323_16769
520 _ _ |a Regarding climate change, the need to reduce greenhouse gas emissions is well-known. As building heating contributes to a high share of total energy consumption, which relies mainly on fossil energy sources, improving heating efficiency is promising to consider. Lowering supply temperatures of the heating systems in buildings offers a huge potential for efficiency improvements since different heat supply technologies, such as heat pumps or district heating, benefit from low supply temperatures. However, most estimations of possible temperature reductions in existing buildings are based on available measurement data on room level or detailed building information about the building's physics to develop simulation models. To reveal the potential of temperature reduction for several buildings and strive for a wide applicability, the presented method focuses on estimations for temperature reduction in existing buildings with limited input data. By evaluating historic heat demand data on the building level, outdoor temperatures and information about installed heaters, the minimal actual necessary supply temperature is calculated for each heater in the building using the LMTD approach. Based on the calculated required supply temperatures for each room at different outdoor temperatures, the overall necessary supply temperatures to be provided to the building are chosen. Thus, the minimal heatcurve possible for an existing building is deduced.The method described is applied to multiple existing office buildings at the campus of Forschungszentrum Jülich, Germany, demonstrating the fast application for several buildings with limited expenditure. Furthermore, a developed adapted heatcurve is implemented in one real building and evaluated in relation to the previously applied heatcurve of the heating system.
536 _ _ |0 G:(DE-HGF)POF4-1123
|a 1123 - Smart Areas and Research Platforms (POF4-112)
|c POF4-112
|f POF IV
|x 0
536 _ _ |0 G:(BMWi)03ET1551A
|a EnOB: LLEC: Living Lab Energy Campus (03ET1551A)
|c 03ET1551A
|x 1
536 _ _ |0 G:(DE-HGF)LLEC-2018-2023
|a LLEC - Living Lab Energy Campus (LLEC-2018-2023)
|c LLEC-2018-2023
|x 2
588 _ _ |a Dataset connected to DataCite
650 2 7 |0 V:(DE-MLZ)SciArea-250
|2 V:(DE-HGF)
|a Others
|x 0
650 1 7 |0 V:(DE-MLZ)GC-110
|2 V:(DE-HGF)
|a Energy
|x 0
700 1 _ |0 P:(DE-Juel1)180103
|a Althaus, Philipp
|b 1
|u fzj
700 1 _ |0 P:(DE-Juel1)187426
|a Johnen, Sascha
|b 2
|u fzj
700 1 _ |0 P:(DE-Juel1)8457
|a Xhonneux, André
|b 3
|u fzj
700 1 _ |0 P:(DE-Juel1)172026
|a Müller, Dirk
|b 4
|u fzj
856 4 _ |u https://publications.ibpsa.org/conference/paper/?id=bs2023_1196
856 4 _ |u https://juser.fz-juelich.de/record/1020280/files/research_paper_contribution_1196_final_upload.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1020280/files/research_paper_contribution_1196_final_upload.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1020280/files/research_paper_contribution_1196_final_upload.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1020280/files/research_paper_contribution_1196_final_upload.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1020280/files/research_paper_contribution_1196_final_upload.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1020280
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)179375
|a Forschungszentrum Jülich
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)180103
|a Forschungszentrum Jülich
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)187426
|a Forschungszentrum Jülich
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)8457
|a Forschungszentrum Jülich
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)172026
|a Forschungszentrum Jülich
|b 4
|k FZJ
913 1 _ |0 G:(DE-HGF)POF4-112
|1 G:(DE-HGF)POF4-110
|2 G:(DE-HGF)POF4-100
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|9 G:(DE-HGF)POF4-1123
|a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|v Digitalisierung und Systemtechnik
|x 0
914 1 _ |y 2023
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 0
980 1 _ |a FullTexts
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21