001020281 001__ 1020281
001020281 005__ 20240712112909.0
001020281 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-00037
001020281 037__ $$aFZJ-2024-00037
001020281 1001_ $$0P:(DE-Juel1)174440$$aMork, Maximilian$$b0$$eCorresponding author
001020281 1112_ $$aTHE 36TH INTERNATIONAL CONFERENCE ON EFFICIENCY, COST, OPTIMIZATION, SIMULATION AND ENVIRONMENTAL IMPACT OF ENERGY SYSTEMS$$cLas Palmas de Gran Canaria$$d2023-06-25 - 2023-06-30$$gECOS2023$$wSpain
001020281 245__ $$aHierarchical Distributed Model Predictive Control for Building Energy Systems
001020281 250__ $$a36th
001020281 260__ $$c2023
001020281 300__ $$a1-12
001020281 3367_ $$2ORCID$$aCONFERENCE_PAPER
001020281 3367_ $$033$$2EndNote$$aConference Paper
001020281 3367_ $$2BibTeX$$aINPROCEEDINGS
001020281 3367_ $$2DRIVER$$aconferenceObject
001020281 3367_ $$2DataCite$$aOutput Types/Conference Paper
001020281 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1710843552_932
001020281 520__ $$aBuildings contribute to approximately 30 % of global energy consumption, which renders their energy-efficient control an effective measure to reduce overall energy consumption. This paper presents a hierarchical distributed Model Predictive Control (MPC) for building energy systems based on nonlinear Modelica controllermodels. It combines hierarchical and distributed optimization approaches to split the optimization complexity within the temporal and spatial dimension. The hierarchical optimization approach considers different dynamics in complex building energy systems and ensures both anticipation for systems with high inertia and reactivitywith regard to errors in the forecasting of the disturbance quantities. The distributed optimization approach divides the centralized optimization problem into subproblems to improve the scalability and adaptability of the control framework. The subproblems are solved in a parallel and iterative manner and account for both thermal (heat transfer over zone boundaries) and hydraulic inter-zone coupling (induced by a central, shared Heating, Ventilation and Air Conditioning (HVAC) system). A particular focus of the control approach is placed on robustness with respect to errors in the forecasting of the disturbances that impact the building dynamics. The control performance of the proposed MPC framework is evaluated in a simulative case study of heating and shading control of a nonlinear six-room-building Modelica model, which is exposed to different forecast accuracies for the disturbances of occupancy, solar radiation and air exchange. The case study exhibits the benefits of the control framework in terms of energy consumption, thermal discomfort and computation time in comparison to a reference control concept of a non-hierarchical distributed MPC configuration.
001020281 536__ $$0G:(DE-HGF)POF4-1123$$a1123 - Smart Areas and Research Platforms (POF4-112)$$cPOF4-112$$fPOF IV$$x0
001020281 536__ $$0G:(BMWi)03EGB0010A$$aEG2050: LLEC-Verwaltungsbau: Klimaneutraler Verwaltungsbau als aktiver Teil des Living Lab Energy Campus (LLEC) (03EGB0010A)$$c03EGB0010A$$x1
001020281 65027 $$0V:(DE-MLZ)SciArea-250$$2V:(DE-HGF)$$aOthers$$x0
001020281 65017 $$0V:(DE-MLZ)GC-110$$2V:(DE-HGF)$$aEnergy$$x0
001020281 7001_ $$0P:(DE-Juel1)8457$$aXhonneux, André$$b1
001020281 7001_ $$0P:(DE-Juel1)172026$$aMüller, Dirk$$b2$$ufzj
001020281 8564_ $$uhttps://juser.fz-juelich.de/record/1020281/files/ECOS_2023%20LaTeX.pdf$$yOpenAccess
001020281 8564_ $$uhttps://juser.fz-juelich.de/record/1020281/files/ECOS_2023%20LaTeX.gif?subformat=icon$$xicon$$yOpenAccess
001020281 8564_ $$uhttps://juser.fz-juelich.de/record/1020281/files/ECOS_2023%20LaTeX.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001020281 8564_ $$uhttps://juser.fz-juelich.de/record/1020281/files/ECOS_2023%20LaTeX.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001020281 8564_ $$uhttps://juser.fz-juelich.de/record/1020281/files/ECOS_2023%20LaTeX.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001020281 909CO $$ooai:juser.fz-juelich.de:1020281$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001020281 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174440$$aForschungszentrum Jülich$$b0$$kFZJ
001020281 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)8457$$aForschungszentrum Jülich$$b1$$kFZJ
001020281 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172026$$aForschungszentrum Jülich$$b2$$kFZJ
001020281 9131_ $$0G:(DE-HGF)POF4-112$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1123$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vDigitalisierung und Systemtechnik$$x0
001020281 9141_ $$y2023
001020281 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001020281 920__ $$lyes
001020281 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
001020281 9801_ $$aFullTexts
001020281 980__ $$acontrib
001020281 980__ $$aVDB
001020281 980__ $$aI:(DE-Juel1)IEK-10-20170217
001020281 980__ $$aUNRESTRICTED
001020281 981__ $$aI:(DE-Juel1)ICE-1-20170217