001020312 001__ 1020312
001020312 005__ 20250204113745.0
001020312 0247_ $$2doi$$a10.1093/insilicoplants/diad022
001020312 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-00054
001020312 0247_ $$2WOS$$aWOS:001145971900001
001020312 037__ $$aFZJ-2024-00054
001020312 082__ $$a004
001020312 1001_ $$0P:(DE-Juel1)185995$$aHelmrich, Dirk Norbert$$b0
001020312 245__ $$aA scalable pipeline to create synthetic datasets from functional–structural plant models for deep learning
001020312 260__ $$a[Oxford]$$bOxford University Press$$c2024
001020312 3367_ $$2DRIVER$$aarticle
001020312 3367_ $$2DataCite$$aOutput Types/Journal article
001020312 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1707827163_6032
001020312 3367_ $$2BibTeX$$aARTICLE
001020312 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001020312 3367_ $$00$$2EndNote$$aJournal Article
001020312 520__ $$aIn plant science, it is an established method to obtain structural parameters of crops using image analysis. In recent years, deep learning techniques have improved the underlying processes significantly. However, since data acquisition is time and resource consuming, reliable training data are currently limited. To overcome this bottleneck, synthetic data are a promising option for not only enabling a higher order of correctness by offering more training data but also for validation of results. However, the creation of synthetic data is complex and requires extensive knowledge in Computer Graphics, Visualization and High-Performance Computing. We address this by introducing Synavis, a framework that allows users to train networks on real-time generated data. We created a pipeline that integrates realistic plant structures, simulated by the functional–structural plant model framework CPlantBox, into the game engine Unreal Engine. For this purpose, we needed to extend CPlantBox by introducing a new leaf geometrization that results in realistic leafs. All parameterized geometries of the plant are directly provided by the plant model. In the Unreal Engine, it is possible to alter the environment. WebRTC enables the streaming of the final image composition, which, in turn, can then be directly used to train deep neural networks to increase parameter robustness, for further plant trait detection and validation of original parameters. We enable user-friendly ready-to-use pipelines, providing virtual plant experiment and field visualizations, a python-binding library to access synthetic data and a ready-to-run example to train models.
001020312 536__ $$0G:(DE-HGF)POF4-2A3$$a2A3 - Remote Sensing  (CARF - CCA) (POF4-2A3)$$cPOF4-2A3$$fPOF IV$$x0
001020312 536__ $$0G:(DE-HGF)POF4-5243$$a5243 - Information Processing in Distributed Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x1
001020312 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x2
001020312 536__ $$0G:(BMBF)390732324$$aEXC 2070:  PhenoRob - Robotics and Phenotyping for Sustainable Crop Production (390732324)$$c390732324$$x3
001020312 536__ $$0G:(DE-Juel-1)DEA02266$$aEUROCC-2 (DEA02266)$$cDEA02266$$x4
001020312 536__ $$0G:(DE-Juel-1)DB001492$$aBMBF 01 1H1 6013, NRW 325 – 8.03 – 133340 - SiVeGCS (DB001492)$$cDB001492$$x5
001020312 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001020312 7001_ $$0P:(DE-Juel1)186730$$aBauer, Felix Maximilian$$b1
001020312 7001_ $$0P:(DE-Juel1)180766$$aGiraud, Mona$$b2
001020312 7001_ $$0P:(DE-Juel1)157922$$aSchnepf, Andrea$$b3$$eCorresponding author
001020312 7001_ $$0P:(DE-Juel1)168541$$aGöbbert, Jens Henrik$$b4
001020312 7001_ $$0P:(DE-Juel1)129394$$aScharr, Hanno$$b5
001020312 7001_ $$00000-0002-8041-5542$$aHvannberg, Ebba Þora$$b6
001020312 7001_ $$0P:(DE-Juel1)132239$$aRiedel, Morris$$b7
001020312 773__ $$0PERI:(DE-600)3019806-9$$a10.1093/insilicoplants/diad022$$gVol. 6, no. 1, p. diad022$$n1$$pdiad022$$tIn silico plants$$v6$$x2517-5025$$y2024
001020312 8564_ $$uhttps://juser.fz-juelich.de/record/1020312/files/Invoice_SOA23LT002633.pdf
001020312 8564_ $$uhttps://juser.fz-juelich.de/record/1020312/files/diad022.pdf$$yOpenAccess
001020312 8564_ $$uhttps://juser.fz-juelich.de/record/1020312/files/helmrich_fspm_camready.pdf$$yOpenAccess
001020312 8564_ $$uhttps://juser.fz-juelich.de/record/1020312/files/diad022.gif?subformat=icon$$xicon$$yOpenAccess
001020312 8564_ $$uhttps://juser.fz-juelich.de/record/1020312/files/diad022.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001020312 8564_ $$uhttps://juser.fz-juelich.de/record/1020312/files/diad022.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001020312 8564_ $$uhttps://juser.fz-juelich.de/record/1020312/files/diad022.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001020312 8564_ $$uhttps://juser.fz-juelich.de/record/1020312/files/helmrich_fspm_camready.gif?subformat=icon$$xicon$$yOpenAccess
001020312 8564_ $$uhttps://juser.fz-juelich.de/record/1020312/files/helmrich_fspm_camready.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001020312 8564_ $$uhttps://juser.fz-juelich.de/record/1020312/files/helmrich_fspm_camready.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001020312 8564_ $$uhttps://juser.fz-juelich.de/record/1020312/files/helmrich_fspm_camready.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001020312 8564_ $$uhttps://juser.fz-juelich.de/record/1020312/files/Invoice_SOA23LT002633.gif?subformat=icon$$xicon
001020312 8564_ $$uhttps://juser.fz-juelich.de/record/1020312/files/Invoice_SOA23LT002633.jpg?subformat=icon-1440$$xicon-1440
001020312 8564_ $$uhttps://juser.fz-juelich.de/record/1020312/files/Invoice_SOA23LT002633.jpg?subformat=icon-180$$xicon-180
001020312 8564_ $$uhttps://juser.fz-juelich.de/record/1020312/files/Invoice_SOA23LT002633.jpg?subformat=icon-640$$xicon-640
001020312 8767_ $$8SOA23LT002633$$92023-11-28$$a1200198670$$d2023-12-04$$eAPC$$jZahlung erfolgt$$zGBP 1580,-
001020312 909CO $$ooai:juser.fz-juelich.de:1020312$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001020312 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185995$$aForschungszentrum Jülich$$b0$$kFZJ
001020312 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186730$$aForschungszentrum Jülich$$b1$$kFZJ
001020312 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180766$$aForschungszentrum Jülich$$b2$$kFZJ
001020312 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157922$$aForschungszentrum Jülich$$b3$$kFZJ
001020312 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168541$$aForschungszentrum Jülich$$b4$$kFZJ
001020312 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129394$$aForschungszentrum Jülich$$b5$$kFZJ
001020312 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132239$$aForschungszentrum Jülich$$b7$$kFZJ
001020312 9131_ $$0G:(DE-HGF)POF4-2A3$$1G:(DE-HGF)POF4-2A0$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lCOOPERATION ACROSS RESEARCH FIELDS (CARFs)$$vRemote Sensing  (CARF - CCA)$$x0
001020312 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5243$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x1
001020312 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x2
001020312 9141_ $$y2024
001020312 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001020312 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001020312 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001020312 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001020312 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001020312 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001020312 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIN SILICO PLANTS : 2022$$d2024-12-10
001020312 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-10
001020312 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-10
001020312 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-03T10:37:02Z
001020312 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-03T10:37:02Z
001020312 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-04-03T10:37:02Z
001020312 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-10
001020312 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-10
001020312 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-10
001020312 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2024-12-10
001020312 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-10
001020312 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-10
001020312 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-10
001020312 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001020312 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x1
001020312 9201_ $$0I:(DE-Juel1)IAS-8-20210421$$kIAS-8$$lDatenanalyse und Maschinenlernen$$x2
001020312 9801_ $$aFullTexts
001020312 980__ $$ajournal
001020312 980__ $$aVDB
001020312 980__ $$aI:(DE-Juel1)JSC-20090406
001020312 980__ $$aI:(DE-Juel1)IBG-3-20101118
001020312 980__ $$aI:(DE-Juel1)IAS-8-20210421
001020312 980__ $$aUNRESTRICTED
001020312 980__ $$aAPC