001     1020312
005     20250204113745.0
024 7 _ |a 10.1093/insilicoplants/diad022
|2 doi
024 7 _ |a 10.34734/FZJ-2024-00054
|2 datacite_doi
024 7 _ |a WOS:001145971900001
|2 WOS
037 _ _ |a FZJ-2024-00054
082 _ _ |a 004
100 1 _ |a Helmrich, Dirk Norbert
|0 P:(DE-Juel1)185995
|b 0
245 _ _ |a A scalable pipeline to create synthetic datasets from functional–structural plant models for deep learning
260 _ _ |a [Oxford]
|c 2024
|b Oxford University Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1707827163_6032
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In plant science, it is an established method to obtain structural parameters of crops using image analysis. In recent years, deep learning techniques have improved the underlying processes significantly. However, since data acquisition is time and resource consuming, reliable training data are currently limited. To overcome this bottleneck, synthetic data are a promising option for not only enabling a higher order of correctness by offering more training data but also for validation of results. However, the creation of synthetic data is complex and requires extensive knowledge in Computer Graphics, Visualization and High-Performance Computing. We address this by introducing Synavis, a framework that allows users to train networks on real-time generated data. We created a pipeline that integrates realistic plant structures, simulated by the functional–structural plant model framework CPlantBox, into the game engine Unreal Engine. For this purpose, we needed to extend CPlantBox by introducing a new leaf geometrization that results in realistic leafs. All parameterized geometries of the plant are directly provided by the plant model. In the Unreal Engine, it is possible to alter the environment. WebRTC enables the streaming of the final image composition, which, in turn, can then be directly used to train deep neural networks to increase parameter robustness, for further plant trait detection and validation of original parameters. We enable user-friendly ready-to-use pipelines, providing virtual plant experiment and field visualizations, a python-binding library to access synthetic data and a ready-to-run example to train models.
536 _ _ |a 2A3 - Remote Sensing (CARF - CCA) (POF4-2A3)
|0 G:(DE-HGF)POF4-2A3
|c POF4-2A3
|f POF IV
|x 0
536 _ _ |a 5243 - Information Processing in Distributed Systems (POF4-524)
|0 G:(DE-HGF)POF4-5243
|c POF4-524
|f POF IV
|x 1
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 2
536 _ _ |a EXC 2070:  PhenoRob - Robotics and Phenotyping for Sustainable Crop Production (390732324)
|0 G:(BMBF)390732324
|c 390732324
|x 3
536 _ _ |a EUROCC-2 (DEA02266)
|0 G:(DE-Juel-1)DEA02266
|c DEA02266
|x 4
536 _ _ |a BMBF 01 1H1 6013, NRW 325 – 8.03 – 133340 - SiVeGCS (DB001492)
|0 G:(DE-Juel-1)DB001492
|c DB001492
|x 5
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Bauer, Felix Maximilian
|0 P:(DE-Juel1)186730
|b 1
700 1 _ |a Giraud, Mona
|0 P:(DE-Juel1)180766
|b 2
700 1 _ |a Schnepf, Andrea
|0 P:(DE-Juel1)157922
|b 3
|e Corresponding author
700 1 _ |a Göbbert, Jens Henrik
|0 P:(DE-Juel1)168541
|b 4
700 1 _ |a Scharr, Hanno
|0 P:(DE-Juel1)129394
|b 5
700 1 _ |a Hvannberg, Ebba Þora
|0 0000-0002-8041-5542
|b 6
700 1 _ |a Riedel, Morris
|0 P:(DE-Juel1)132239
|b 7
773 _ _ |a 10.1093/insilicoplants/diad022
|g Vol. 6, no. 1, p. diad022
|0 PERI:(DE-600)3019806-9
|n 1
|p diad022
|t In silico plants
|v 6
|y 2024
|x 2517-5025
856 4 _ |u https://juser.fz-juelich.de/record/1020312/files/Invoice_SOA23LT002633.pdf
856 4 _ |u https://juser.fz-juelich.de/record/1020312/files/diad022.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1020312/files/helmrich_fspm_camready.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1020312/files/diad022.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1020312/files/diad022.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1020312/files/diad022.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1020312/files/diad022.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1020312/files/helmrich_fspm_camready.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1020312/files/helmrich_fspm_camready.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1020312/files/helmrich_fspm_camready.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1020312/files/helmrich_fspm_camready.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1020312/files/Invoice_SOA23LT002633.gif?subformat=icon
|x icon
856 4 _ |u https://juser.fz-juelich.de/record/1020312/files/Invoice_SOA23LT002633.jpg?subformat=icon-1440
|x icon-1440
856 4 _ |u https://juser.fz-juelich.de/record/1020312/files/Invoice_SOA23LT002633.jpg?subformat=icon-180
|x icon-180
856 4 _ |u https://juser.fz-juelich.de/record/1020312/files/Invoice_SOA23LT002633.jpg?subformat=icon-640
|x icon-640
909 C O |o oai:juser.fz-juelich.de:1020312
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)185995
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)186730
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)180766
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)157922
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)168541
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129394
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)132239
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l COOPERATION ACROSS RESEARCH FIELDS (CARFs)
|1 G:(DE-HGF)POF4-2A0
|0 G:(DE-HGF)POF4-2A3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Remote Sensing (CARF - CCA)
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5243
|x 1
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 2
914 1 _ |y 2024
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IN SILICO PLANTS : 2022
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-04-03T10:37:02Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-04-03T10:37:02Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-04-03T10:37:02Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-10
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-10
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-10
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-10
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 1
920 1 _ |0 I:(DE-Juel1)IAS-8-20210421
|k IAS-8
|l Datenanalyse und Maschinenlernen
|x 2
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a I:(DE-Juel1)IAS-8-20210421
980 _ _ |a UNRESTRICTED
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21