001020351 001__ 1020351
001020351 005__ 20250204113745.0
001020351 0247_ $$2doi$$a10.1021/acsnano.3c08601
001020351 0247_ $$2ISSN$$a1936-0851
001020351 0247_ $$2ISSN$$a1936-086X
001020351 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-00084
001020351 0247_ $$2pmid$$a38126781
001020351 0247_ $$2WOS$$aWOS:001139622600001
001020351 037__ $$aFZJ-2024-00084
001020351 082__ $$a540
001020351 1001_ $$0P:(DE-Juel1)145420$$aWei, Xiankui$$b0$$eCorresponding author
001020351 245__ $$aAtomic Diffusion-Induced Polarization and Superconductivity in Topological Insulator-Based Heterostructures
001020351 260__ $$aWashington, DC$$bSoc.$$c2024
001020351 3367_ $$2DRIVER$$aarticle
001020351 3367_ $$2DataCite$$aOutput Types/Journal article
001020351 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1705040934_26422
001020351 3367_ $$2BibTeX$$aARTICLE
001020351 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001020351 3367_ $$00$$2EndNote$$aJournal Article
001020351 520__ $$aThe proximity effect at a highly transparent interface of an s-wave superconductor (S) and a topological insulator (TI) provides a promising platform to create Majorana zero modes in artificially designed heterostructures. However, structural and chemical issues pertinent to such interfaces have been poorly explored so far. Here, we report the discovery of Pd diffusion-induced polarization at interfaces between superconductive Pd1+x(Bi0.4Te0.6)2 (xPBT, 0 ≤ x ≤ 1) and Pd-intercalated Bi2Te3 by using atomic-resolution scanning transmission electron microscopy. Our quantitative image analysis reveals that nanoscale lattice strain and QL polarity synergistically suppress and promote Pd diffusion at the normal and parallel interfaces, formed between Te–Pd–Bi triple layers (TLs) and Te–Bi–Te–Bi–Te quintuple layers (QLs), respectively. Further, our first-principles calculations unveil that the superconductivity of the xPBT phase and topological nature of the Pd-intercalated Bi2Te3 phase are robust against the broken inversion symmetry. These findings point out the necessity of considering the coexistence of electric polarization with superconductivity and topology in such S–TI systems.
001020351 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001020351 536__ $$0G:(GEPRIS)390534769$$aDFG project 390534769 - EXC 2004: Materie und Licht für Quanteninformation (ML4Q) (390534769)$$c390534769$$x1
001020351 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001020351 7001_ $$0P:(DE-Juel1)171826$$aJalil, Abdur Rehman$$b1$$ufzj
001020351 7001_ $$0P:(DE-Juel1)157882$$aRüssmann, Philipp$$b2$$eCorresponding author$$ufzj
001020351 7001_ $$0P:(DE-HGF)0$$aAndo, Yoichi$$b3
001020351 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b4$$ufzj
001020351 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b5$$ufzj
001020351 7001_ $$0P:(DE-Juel1)130824$$aMayer, Joachim$$b6$$ufzj
001020351 773__ $$0PERI:(DE-600)2383064-5$$a10.1021/acsnano.3c08601$$gp. acsnano.3c08601$$n1$$p571-580$$tACS nano$$v18$$x1936-0851$$y2024
001020351 8564_ $$uhttps://juser.fz-juelich.de/record/1020351/files/wei-et-al-2023-atomic-diffusion-induced-polarization-and-superconductivity-in-topological-insulator-based-1.pdf$$yOpenAccess
001020351 8564_ $$uhttps://juser.fz-juelich.de/record/1020351/files/wei-et-al-2023-atomic-diffusion-induced-polarization-and-superconductivity-in-topological-insulator-based-1.gif?subformat=icon$$xicon$$yOpenAccess
001020351 8564_ $$uhttps://juser.fz-juelich.de/record/1020351/files/wei-et-al-2023-atomic-diffusion-induced-polarization-and-superconductivity-in-topological-insulator-based-1.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001020351 8564_ $$uhttps://juser.fz-juelich.de/record/1020351/files/wei-et-al-2023-atomic-diffusion-induced-polarization-and-superconductivity-in-topological-insulator-based-1.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001020351 8564_ $$uhttps://juser.fz-juelich.de/record/1020351/files/wei-et-al-2023-atomic-diffusion-induced-polarization-and-superconductivity-in-topological-insulator-based-1.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001020351 8767_ $$d2024-01-10$$eHybrid-OA$$jPublish and Read
001020351 909CO $$ooai:juser.fz-juelich.de:1020351$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
001020351 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171826$$aForschungszentrum Jülich$$b1$$kFZJ
001020351 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157882$$aForschungszentrum Jülich$$b2$$kFZJ
001020351 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b4$$kFZJ
001020351 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b5$$kFZJ
001020351 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130824$$aForschungszentrum Jülich$$b6$$kFZJ
001020351 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001020351 9141_ $$y2024
001020351 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001020351 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001020351 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001020351 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-25
001020351 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001020351 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-25
001020351 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-07
001020351 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-07
001020351 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-07
001020351 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-07
001020351 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-07
001020351 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS NANO : 2022$$d2025-01-07
001020351 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bACS NANO : 2022$$d2025-01-07
001020351 920__ $$lyes
001020351 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
001020351 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
001020351 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x2
001020351 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x3
001020351 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x4
001020351 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x5
001020351 980__ $$ajournal
001020351 980__ $$aVDB
001020351 980__ $$aUNRESTRICTED
001020351 980__ $$aI:(DE-Juel1)IAS-1-20090406
001020351 980__ $$aI:(DE-Juel1)PGI-1-20110106
001020351 980__ $$aI:(DE-Juel1)ER-C-2-20170209
001020351 980__ $$aI:(DE-Juel1)PGI-9-20110106
001020351 980__ $$aI:(DE-82)080012_20140620
001020351 980__ $$aI:(DE-82)080009_20140620
001020351 980__ $$aAPC
001020351 9801_ $$aAPC
001020351 9801_ $$aFullTexts