001     1020353
005     20240709082049.0
037 _ _ |a FZJ-2024-00086
041 _ _ |a English
100 1 _ |a Park, Inhee
|0 P:(DE-Juel1)194615
|b 0
|e First author
111 2 _ |a OPERANDO SPM 2023
|c Berlin
|d 2023-11-14 - 2023-11-16
|w Germany
245 _ _ |a In-Situ electrochemical mapping of local activity on Zn and Zn-Al alloy using scanning electrochemical microscopy
260 _ _ |c 2023
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1705036020_26020
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Metal-air batteries have gained tremendous attention in the past years as promising technologies due to their theoretically high specific energy and environmentally friendly use of oxygen 1. Considering the cost-effectiveness and natural abundance, Zn and Al are good candidates for metal-air batteries. However, in Zn-air systems, stable cyclability is an issue due to the passivation layer on Zn electrodes in neutral electrolyte. Guerrero et al. reported recently that ethylenediaminetetraacetic acid (EDTA) as an electrolyte additive activates the surface of Zn electrode to maintain metallic property, thereby improving the performance of Zn-air batteries in near-neutral chloride-based electrolyte 2. In this study, we investigate the local activity on Zn and Zn-10Al alloy electrodes in 2 M NaCl (pH 10) containing EDTA by using scanning electrochemical microscopy (SECM). We observed that the surfaces of Zn and Zn-10Al alloy electrodes are passivated at open circuit potential (OCP) and these passivation layers disappear at OCP by adding EDTA in the electrolyte. As the potential is applied to slightly positive of OCP, the formation of the passivation layer is more dominant than the activation by EDTA, resulting from the limited amount of dissociated EDTA in near-neutral electrolyte. It is noteworthy that a clear topographic change is observed by means of AFM-SECM after the electrode contacts with EDTA, which demonstrates the effect of EDTA.
536 _ _ |a 1223 - Batteries in Application (POF4-122)
|0 G:(DE-HGF)POF4-1223
|c POF4-122
|f POF IV
|x 0
536 _ _ |a iNEW2.0 (BMBF-03SF0627A)
|0 G:(DE-Juel1)BMBF-03SF0627A
|c BMBF-03SF0627A
|x 1
700 1 _ |a Durmus, Yasin Emre
|0 P:(DE-Juel1)162243
|b 1
700 1 _ |a Kungl, Hans
|0 P:(DE-Juel1)157700
|b 2
700 1 _ |a Tempel, Hermann
|0 P:(DE-Juel1)161208
|b 3
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 4
|u fzj
700 1 _ |a Hausen, Florian
|0 P:(DE-Juel1)167581
|b 5
|e Corresponding author
|u fzj
909 C O |o oai:juser.fz-juelich.de:1020353
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)194615
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)162243
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)157700
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)161208
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 P:(DE-Juel1)156123
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)167581
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 5
|6 P:(DE-Juel1)167581
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1223
|x 0
914 1 _ |y 2023
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21