001020359 001__ 1020359
001020359 005__ 20240226075254.0
001020359 037__ $$aFZJ-2024-00092
001020359 1001_ $$0P:(DE-Juel1)194141$$aStiele, Holger$$b0$$eCorresponding author$$ufzj
001020359 1112_ $$aThe X-ray Universe 2023$$cAthens$$d2023-06-13 - 2023-06-16$$wGreece
001020359 245__ $$aFrom hard to soft: Following the evolution of QPOs
001020359 260__ $$c2023
001020359 3367_ $$033$$2EndNote$$aConference Paper
001020359 3367_ $$2BibTeX$$aINPROCEEDINGS
001020359 3367_ $$2DRIVER$$aconferenceObject
001020359 3367_ $$2ORCID$$aCONFERENCE_POSTER
001020359 3367_ $$2DataCite$$aOutput Types/Conference Poster
001020359 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1704443866_29017$$xAfter Call
001020359 520__ $$aIn 2021, the Neutron star Interior Composition Explorer (NICER) onboard the International Space Station closely monitored an outburst of GX 339-4, the prime example of a low-mass black hole X-ray binary. The dense coverage of this outburst and the increased sensitivity of NICER compared to previous missions allowed us to study in detail the evolution of quasi-periodic oscillations (QPOs) and noise components in the intermediate states as the source transitions from the hard to the soft state. The evolution between these states is a somewhat erratic process with multiple transitions. In our study, we were able to follow the emergence and disappearance of the different types of QPOs in more detail and gain further insight into their evolution. In addition to the power-density spectra, we also investigated the evolution of spectral parameters, but found only a strong correlation between the hardness ratio and the type of QPO observed.  We present the results of our study and discuss implications of our findings for the occurrence and coherence of type-B QPOs and their relation to changes in the accretion geometry of the system. We will also consider them in light of the Comptonisation models for type-C and type-B QPOs.
001020359 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001020359 536__ $$0G:(DE-Juel-1)PROFILNRW-2020-038B$$aBig Bang to Big Data - B3D [NRW-Cluster für datenintensive Radioastronomie] (PROFILNRW-2020-038B)$$cPROFILNRW-2020-038B$$x1
001020359 7001_ $$0P:(DE-HGF)0$$aKong, Albert$$b1
001020359 909CO $$ooai:juser.fz-juelich.de:1020359$$pVDB
001020359 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194141$$aForschungszentrum Jülich$$b0$$kFZJ
001020359 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a National Tsing Hua University$$b1
001020359 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001020359 9141_ $$y2023
001020359 920__ $$lno
001020359 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001020359 980__ $$aposter
001020359 980__ $$aVDB
001020359 980__ $$aI:(DE-Juel1)JSC-20090406
001020359 980__ $$aUNRESTRICTED