001020362 001__ 1020362
001020362 005__ 20240226075254.0
001020362 037__ $$aFZJ-2024-00095
001020362 1001_ $$0P:(DE-Juel1)157882$$aRüssmann, Philipp$$b0$$eCorresponding author$$ufzj
001020362 1112_ $$aAPS March Meeting 2023$$cLas Vegas$$d2023-03-05 - 2023-03-10$$wUSA
001020362 245__ $$aScrutinizing a superconductor-topological insulator interface as a platform for topological superconductivity
001020362 260__ $$c2023
001020362 3367_ $$033$$2EndNote$$aConference Paper
001020362 3367_ $$2DataCite$$aOther
001020362 3367_ $$2BibTeX$$aINPROCEEDINGS
001020362 3367_ $$2DRIVER$$aconferenceObject
001020362 3367_ $$2ORCID$$aLECTURE_SPEECH
001020362 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1704365966_21370$$xOther
001020362 520__ $$aInterfacing a topological insulator (TI) with an s-wave superconductor (SC) is a promising material platform that offers the possibility to realize a topological superconductor through which Majorana-based topologically protected qubits can be engineered. In our computational study of the prototypical SC/TI interface between Nb and Bi2Te3, we identify the benefits and possible bottlenecks of this potential Majorana material platform. Bringing Nb in contact with the TI film induces charge doping from the SC to the TI, which shifts the Fermi level into the TI conduction band. For thick TI films, this results in band bending leading to the population of trivial TI quantum-well states at the interface. In the superconducting state, we uncover that the topological surface state experiences a sizable superconducting gap-opening at the SC/TI interface, which is furthermore robust against fluctuations of the Fermi energy. We also show that the trivial interface state is only marginally proximitized, potentially obstructing the realization of Majorana-based qubits in this material platform.
001020362 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001020362 536__ $$0G:(GEPRIS)390534769$$aDFG project 390534769 - EXC 2004: Materie und Licht für Quanteninformation (ML4Q) (390534769)$$c390534769$$x1
001020362 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b1$$ufzj
001020362 8564_ $$uhttps://meetings.aps.org/Meeting/MAR23/Session/N44.2
001020362 8564_ $$uhttps://juser.fz-juelich.de/record/1020362/files/talk_APS_LasVegas_PRuessmann.pdf$$yRestricted
001020362 8564_ $$uhttps://juser.fz-juelich.de/record/1020362/files/talk_APS_LasVegas_PRuessmann.gif?subformat=icon$$xicon$$yRestricted
001020362 8564_ $$uhttps://juser.fz-juelich.de/record/1020362/files/talk_APS_LasVegas_PRuessmann.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
001020362 8564_ $$uhttps://juser.fz-juelich.de/record/1020362/files/talk_APS_LasVegas_PRuessmann.jpg?subformat=icon-180$$xicon-180$$yRestricted
001020362 8564_ $$uhttps://juser.fz-juelich.de/record/1020362/files/talk_APS_LasVegas_PRuessmann.jpg?subformat=icon-640$$xicon-640$$yRestricted
001020362 909CO $$ooai:juser.fz-juelich.de:1020362$$pVDB
001020362 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157882$$aForschungszentrum Jülich$$b0$$kFZJ
001020362 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b1$$kFZJ
001020362 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001020362 9141_ $$y2023
001020362 920__ $$lyes
001020362 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
001020362 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
001020362 980__ $$aconf
001020362 980__ $$aVDB
001020362 980__ $$aI:(DE-Juel1)IAS-1-20090406
001020362 980__ $$aI:(DE-Juel1)PGI-1-20110106
001020362 980__ $$aUNRESTRICTED