001020367 001__ 1020367
001020367 005__ 20240709082049.0
001020367 037__ $$aFZJ-2024-00100
001020367 1001_ $$0P:(DE-Juel1)180853$$aPark, Junbeom$$b0$$eCorresponding author
001020367 1112_ $$aThe 20th International Microscopy Congress$$cBusan$$d2023-09-10 - 2023-09-15$$gIMC20$$wSouth Korea
001020367 245__ $$aImproving the knowledge from in-situ Liquid Phase TEM via image processing
001020367 260__ $$c2023
001020367 3367_ $$033$$2EndNote$$aConference Paper
001020367 3367_ $$2BibTeX$$aINPROCEEDINGS
001020367 3367_ $$2DRIVER$$aconferenceObject
001020367 3367_ $$2ORCID$$aCONFERENCE_POSTER
001020367 3367_ $$2DataCite$$aOutput Types/Conference Poster
001020367 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1704435900_30062$$xAfter Call
001020367 520__ $$aIn-situ liquid-phase transmission electron microscopy (LPTEM) allows us to observe solid-liquid interaction at the nanoscale. With the advent of MEMS-based liquid cells, LPTEM has become even more flexible in applying various stimuli, such as electrochemical biasing and heating, to perform (electro-)chemical studies. The use of LPTEM has already shaded light into nanoscale processes such as nucleation and growth during electrodeposition [1,2]. These processes are crucial for many applications, such as battery technology, and understanding them can lead to significant improvements in device performance.To extract quantifiable information from the acquired image sets, image processing has become an integral part of the LPTEM technique. For example, the correct background subtraction enables us to extract actual information from an area with uneven liquid thickness. This process can be critical for understanding the true nature of the observed processes. Moreover, segmentation of features from the background enables us to track the mechanism quantitatively. This approach is essential for understanding the complex dynamics of the processes that occur at the nanoscale. Additionally, extracting the 3-dimensional deposition profile from a simple HAADF STEM dataset can provide vital information on the deposition process. The quantitative information obtained due to the integration of image processing into LPTEM can be crucial for developing better (electro-)chemical systems and understanding the complex dynamics that occur at the nanoscale.
001020367 536__ $$0G:(DE-HGF)POF4-1232$$a1232 - Power-based Fuels and Chemicals (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001020367 7001_ $$0P:(DE-HGF)0$$aSun, Hongyu$$b1
001020367 7001_ $$0P:(DE-Juel1)180678$$aJo, Janghyun$$b2
001020367 7001_ $$0P:(DE-Juel1)180432$$aBasak, Shibabrata$$b3
001020367 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b4$$ufzj
001020367 909CO $$ooai:juser.fz-juelich.de:1020367$$pVDB
001020367 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180853$$aForschungszentrum Jülich$$b0$$kFZJ
001020367 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180678$$aForschungszentrum Jülich$$b2$$kFZJ
001020367 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180432$$aForschungszentrum Jülich$$b3$$kFZJ
001020367 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b4$$kFZJ
001020367 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b4$$kRWTH
001020367 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1232$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001020367 9141_ $$y2023
001020367 920__ $$lyes
001020367 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
001020367 980__ $$aposter
001020367 980__ $$aVDB
001020367 980__ $$aI:(DE-Juel1)IEK-9-20110218
001020367 980__ $$aUNRESTRICTED
001020367 981__ $$aI:(DE-Juel1)IET-1-20110218