001020368 001__ 1020368
001020368 005__ 20240226075254.0
001020368 037__ $$aFZJ-2024-00101
001020368 1001_ $$0P:(DE-Juel1)157882$$aRüssmann, Philipp$$b0$$eCorresponding author$$ufzj
001020368 1112_ $$aML4Q Annual Conference 2023$$cKönigswinter$$d2023-09-13 - 2023-09-15$$wGermany
001020368 245__ $$aDensity-functional description of materials for topological qubits and superconducting spintronics
001020368 260__ $$c2023
001020368 3367_ $$033$$2EndNote$$aConference Paper
001020368 3367_ $$2BibTeX$$aINPROCEEDINGS
001020368 3367_ $$2DRIVER$$aconferenceObject
001020368 3367_ $$2ORCID$$aCONFERENCE_POSTER
001020368 3367_ $$2DataCite$$aOutput Types/Conference Poster
001020368 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1704804889_19180$$xOther
001020368 520__ $$aInterfacing superconductors with magnetic or topological materials offers a playground where novel phenomena like topological superconductivity, Majorana zero modes, or superconducting spintronics are emerging [1]. In this work, we discuss recent developments in the Kohn-Sham Bogoliubov-de Gennes method, which allows to perform material-specific simulations of complex superconducting heterostructures on the basis of density functional theory [2]. As a model system we study magnetically-doped Pb [3]. In our analysis we focus on the interplay of magnetism and superconductivity. This combination leads to Yu-Shiba-Rusinov (YSR) in-gap bound states at magnetic defects and the breakdown of superconductivity at larger impurity concentrations. Moreover, the influence of spin-orbit coupling and on orbital splitting of YSR states as well as the appearance of a triplet component in the order parameter is discussed. These effects can be exploited in S/F/S-type devices (S=superconductor, F=ferromagnet) in the field of superconducting spintronics [1].---[1] R. Cai, I. Zutic, and W. Han, “Superconductor/Ferromagnet Heterostructures: A Platform for Supercon-ducting Spintronics and Quantum Computation,” Advanced Quantum Technologies 6(1), 2200080 (2023).[2] P. Rüßmann, and S. Blügel, “Density functional Bogoliubov-de Gennes analysis of superconducting Nb and Nb(110) surfaces”, Phys. Rev. B 105, 125143 (2022).[3] P. Rüßmann, D. Antognini Silva, M. Hemmati, I. Klepetsanis, B.Trauzettel, P. Mavropoulos, and S. Blügel, “Density-functional description of materials for topological qubits and superconducting spintronics”, arXiv:2308.07383 (2023).
001020368 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001020368 536__ $$0G:(GEPRIS)390534769$$aDFG project 390534769 - EXC 2004: Materie und Licht für Quanteninformation (ML4Q) (390534769)$$c390534769$$x1
001020368 7001_ $$0P:(DE-Juel1)186673$$aAntognini Silva, David$$b1$$ufzj
001020368 7001_ $$0P:(DE-Juel1)187560$$aHemmati, Mohammad$$b2$$ufzj
001020368 7001_ $$0P:(DE-Juel1)197001$$aKlepetsanis, Ilias$$b3$$ufzj
001020368 7001_ $$0P:(DE-HGF)0$$aTrauzettel, Björn$$b4
001020368 7001_ $$0P:(DE-Juel1)130823$$aMavropoulos, Phivos$$b5
001020368 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b6$$ufzj
001020368 8564_ $$uhttps://juser.fz-juelich.de/record/1020368/files/poster_ML4Q.pdf$$yRestricted
001020368 8564_ $$uhttps://juser.fz-juelich.de/record/1020368/files/poster_ML4Q.gif?subformat=icon$$xicon$$yRestricted
001020368 8564_ $$uhttps://juser.fz-juelich.de/record/1020368/files/poster_ML4Q.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
001020368 8564_ $$uhttps://juser.fz-juelich.de/record/1020368/files/poster_ML4Q.jpg?subformat=icon-180$$xicon-180$$yRestricted
001020368 8564_ $$uhttps://juser.fz-juelich.de/record/1020368/files/poster_ML4Q.jpg?subformat=icon-640$$xicon-640$$yRestricted
001020368 909CO $$ooai:juser.fz-juelich.de:1020368$$pVDB
001020368 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157882$$aForschungszentrum Jülich$$b0$$kFZJ
001020368 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186673$$aForschungszentrum Jülich$$b1$$kFZJ
001020368 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187560$$aForschungszentrum Jülich$$b2$$kFZJ
001020368 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)197001$$aForschungszentrum Jülich$$b3$$kFZJ
001020368 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b6$$kFZJ
001020368 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001020368 9141_ $$y2023
001020368 920__ $$lyes
001020368 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
001020368 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
001020368 980__ $$aposter
001020368 980__ $$aVDB
001020368 980__ $$aI:(DE-Juel1)IAS-1-20090406
001020368 980__ $$aI:(DE-Juel1)PGI-1-20110106
001020368 980__ $$aUNRESTRICTED