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Abstract 13 

Next generation bioprocesses of a future bio-based economy will rely on a flexible mix of 14 

readily available feedstocks. Renewable energy can be used to generate sustainable CO2-15 

derived substrates. Metabolic engineering already enables the functional implementation of 16 

different pathways for the assimilation of C1 substrates in various microorganisms. In 17 

addition to feedstocks, the benchmark for all future bioprocesses will be sustainability, 18 

including the avoidance of CO2 emissions. Here we review recent advances in the utilization 19 

of C1-compounds from different perspectives, considering both strain- and bioprocess 20 

engineering technologies. In particular, we evaluate methanol as co-feed for enabling CO2 21 

emission-free production of acetyl-CoA-derived compounds. Possible metabolic strategies 22 

are analyzed using stoichiometric modeling combined with thermodynamic analysis and 23 

prospects on industrial-scale implementation are discussed. 24 
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Background 27 

Reaching the defined sustainability goals encourages industry and individuals to find 28 

sustainable solutions and reduce greenhouse gas emissions in all sectors. Biotechnological 29 

production processes use renewable feedstocks and are expected to drive the transition to a 30 

sustainable, biobased economy with a lower or zero carbon footprint. Currently, 31 

bioprocesses rely on rather defined feedstocks from the first or second generation, which are 32 

rich in sugars as these are the preferred substrates of current industrial microorganisms 33 

[1,2]. While based on a renewable feedstock, CO2 is released during aerobic as well as 34 

anaerobic processes, mostly because of a degree of reduction or energy imbalance. Rare 35 

exceptions of products with complete carbon conservation and redox, energy balanced 36 

pathways are lactate and 3-hydroxypropionic acid.  37 

CO2 emission free production is desirable for several reasons. CO2 emissions have been 38 

identified as a main contributor for global warming and climate change, whose social, 39 

economic and ecological consequences are both unpredictable and potentially catastrophic. 40 

Additionally, with no CO2 emissions, full carbon conservation and thus resource efficiency is 41 

achieved, i.e. better use of raw materials and reduction in land use. The latter is further 42 

improved using second-generation agricultural feedstock. Next to ecological motivations, 43 

there are economic drivers for CO2 emission free processes. Government across the world 44 

are pushing for a CO2 free economy and taxes to CO2 emissions have been introduced and 45 

are expected to be increased in the future. Thus, a CO2 emissions free bioprocess will also 46 

be competitive by no to very low CO2 taxation. 47 

A potential solution for this problematic is the feeding of co-substrates to “boost” energy or 48 

reduction equivalents [2]. An electron deficit can be solved by feeding additional electrons 49 

and applying non-oxidative pathways. For example, the product yield of ethanol from glucose 50 

can be increased by 50% when non-oxidative glycolysis is used in combination with H2 gas 51 

feed [3].  52 



Such high-energy co-substrates can be gained from (electrochemical) CO2 regeneration from 53 

the off-gas stream. Van Winden and coworkers used the off-gas CO2 to generate formiate 54 

that was fed to the bioprocess and increased the glucose-based biomass yield of Yarrowia 55 

lipolytica by 20% [4]. For the future it is expected that excess renewable energy will be 56 

available to generate CO2-derived reduced carbon substrates at scale. In addition to being a 57 

sustainable, renewable source, such feedstock could enable fully CO2emission-free 58 

bioprocesses even without recycling loops or additional measures like explosion protection 59 

due to dangerous gas-mixtures.  60 

Here, we explore the opportunities for net-zero CO2 production of several, reduced 61 

compounds by co-feeding methanol as a reduced carbon source. The co-feeding of 62 

methanol and sugars has been reported in previous efforts for achieving methanol 63 

auxotrophic strains [5-7] ; in this article, we aim to expand the scope by taking in 64 

consideration CO2 emissions, as well as carbon and electron efficiency.  65 

Methanol was chosen as it is liquid, well soluble, pH neutral and industrially-relevant hosts 66 

have a high tolerance to this alcohol. Renewable methanol (also known as green methanol) 67 

can be obtained from several different sources: (1) oxidation of methane from biogas plants 68 

using carbon waste streams, (2) reduction of CO2 in industrial waste streams using green H2 69 

(first commercial plants have been established, for example Carbon Recycling International 70 

(CRI) based in Reykjavik, Iceland). (3) potentially from direct electrochemical reduction of 71 

CO2 to methanol, although a process suitable for commercial applications is yet to be 72 

developed [8,9] 73 

Green methanol as substrate is not yet economically viable when compared to methanol 74 

from fossil origin (also known as grey methanol). However, with the rapid developments of 75 

green technologies, the production costs will lower. At the same time the pressure from 76 

regulators, with increasing tax burden in carbon emissions, may eventually tip the balance in 77 

favour of green methanol. 78 

  79 



The guiding concept of our analysis is to use a second generation agricultural feedstock 80 

containing glucose or xylose together with methanol as a booster, such that full carbon 81 

conservation is achieved and the bioprocess reaches net zero CO2 emissions. Theoretically, 82 

methanol alone could achieve emission-free production of reduced compounds. 83 

Nevertheless, this approach leads to a loss of electrons and thus decreased efficiency. The 84 

degree reduction of methanol is higher than the products discussed here. Furthermore, due 85 

to the multi-carbon nature of sugars, a lower amount of C-C bonds, which are energetically 86 

costly, have to be formed, leading to an increase in energy yields overall.  87 

Following the formulated concept of sustainable metabolic engineering (SME) we apply flux 88 

balance analysis to determine the relevant pathway combination(s) and choose substrate 89 

mixtures that are resource efficient [10]. In a second step, the putative flux distributions are 90 

evaluated with respect to the thermodynamic feasibilities [11,12]  91 

Reduced chemicals with importance for different sectors were chosen as products: 92 

polyhydroxybutyric acid (PHB) as a model biopolymer, noreugenin for compounds derived 93 

from polyketides, and butyric acid methyl ester (BAME) for products derived from fatty acids. 94 

These precursors have applications in food, pharma as well as biofuels, partly after 95 

modifications. The product pathways are short and demonstrated functional under various 96 

conditions.  97 

Such pathways can be easily introduced in industrial hosts thanks to recently developed 98 

powerful genome editing tools like CRISPR-Cas9 and user-friendly cloning tools, creating 99 

custom microbial cell factories in a short time [13,14], although not without challenges such 100 

as the potential generation of cytotoxic intermediates [15]. For example, engineered yeast 101 

variants have successfully synthesized pharmaceutical precursors through complex 102 

biosynthetic pathways with numerous genetic edits [16]. 103 

  104 



Methanol assimilation pathways 105 

Currently, there are four known, natural pathways for assimilation of methanol in 106 

methylotrophic bacteria and yeasts: (1) The ribulose monophosphate (RuMP) cycle of β- and 107 

γ-proteobacteria [17], (2) the serine cycle [18], (3) the ribulose biphosphate (RuBP) cycle, 108 

found in α-proteobacteria [19] and (4) the xylulose monophosphate cycle (XuMP) exclusively 109 

found in yeasts [20].  110 

All pathways have a tight link with a glycolytic or TCA cycle intermediate (Figure 1). The 111 

RuMP cycle generates fructose-6-phosphate (F6P) via the combination of formaldehyde and 112 

ribulose-5-phosphate (Ru5P) by the enzymes hexulose-6-phosphate synthase (HPS) and 113 

hexulose-6-phosphate isomerase (PHI) [21-24]. The Serine cycle is fed by formate  and 114 

produces acetyl coenzyme A (AcCoA) that is interconnected with the ethyl malonyl-CoA 115 

cycle and the TCA cycle [18,25]. 116 

In addition to the native pathways, several synthetic pathways with specific properties have 117 

been developed. The modified serine cycle [26] features a simplified oxidation of 118 

formaldehyde to formate using formaldehyde dehydrogenase and prevents the use of the 119 

enzyme Hpr in E.coli, which converts glyoxylate to glycolate faster than it converts 120 

hydroxypyruvate to glycerate. Researchers transaminated glyoxylate with alanine to produce 121 

glycine and converted serine to pyruvate using serine dehydratase, thus avoiding 122 

hydroxypyruvate as an intermediate. However, there is a high energy cost of 3 ATP 123 

molecules per molecule of AcCoA. Another variant is the serine-threonine cycle [27,28], 124 

which regenerates glycine using the threonine biosynthesis and cleavage system; here, only 125 

one non-native enzyme has to be introduced in E. coli.  A more energy efficient variant is the 126 

homoserine cycle based on two promiscuous formaldehyde-condensing aldolase reactions 127 

that form AcCoA from two molecules formaldehyde [29]. 128 

The DAS Pathway uses the enzyme dihydroxyacetone synthase from Pichia angusta to 129 

combine Xu5P and formaldehyde to produce GA3P and DHA [30].  130 



 131 

Figure 1: Schematic overview of selected methanol assimilation pathways. The green and 132 

grey triangles represent the chosen substrates, key intermediates and metabolic cycles, 133 

respectively. Multi-colored lines indicate identical steps in different pathways. Details for all 134 

reactions and metabolites of the pathways can be found in the supplementary information 135 

(S1). A complete graphical network representation is available in S2. AcP: Acetyl-Phosphate, 136 

DHA(P): Dihydroxyacetone (phosphate), F6P: Fructose-6-phosphate, GALD: 137 

Glycolaldehyde, MeOH: Methanol, Ru5P: Ribulose-5-phosphate, Pyr: Pyruvate, Xu5P: 138 

Xylulose-5-phosphate.  139 

 140 

So far, the pathways described are cyclic and require formaldehyde acceptor regeneration, 141 

which can be challenging [31]. To avoid recycling, several linear pathways have been 142 

developed. The reductive glycine pathway (rGly) was designed [32,33] for the incorporation 143 

of formate and/or CO2. The pathway is a combination of the tetrahydrofolate system, the 144 

glycine cleavage system, and the serine hydroxymethyltransferase and deaminase. This 145 



combination allows for a higher biomass yield, all reactions are thermodynamically feasible 146 

and there were no hurdles for the heterologous expression. Here, two ATP are required for 147 

the assimilation of formate (resp. methanol).  148 

Other synthetic linear pathways are based on non-natural reactions. (1) The formolase 149 

pathway uses the computationally designed enzyme formolase, with catalyzes the 150 

carboligation of three formaldehyde molecules into one DHA molecule [34]. This pathway 151 

requires only five steps that are thermodynamically feasible. (2) The Synthetic AcCoA 152 

pathway (SACA) [35] produces AcCoA in three steps. First, two formaldehyde molecules are 153 

condensed to glycolaldehyde (GALD) by an engineered glycolaldehyde synthase. Then 154 

GALD reacts to acetylphosphate (AcP) using a phosphoketolase and in the last step, AcP is 155 

transformed to AcCoA. The authors claim this pathway to have 100% carbon conservations 156 

and a very high Max-min Optimized Driving-Force (MDF) of 26.9 kJ/mol. (3) The HACL 157 

pathway [36] is based on the enzyme 2-hydroxyacyl CoA lyase (HACL), which catalyses the 158 

conversion of formaldehyde with formyl-CoA to glycolyl-CoA. In combination with an acyl-159 

CoA reductase, different compounds are produced, such as AcP or glycolate. (4) The GAA 160 

and GAPA pathways [37,38] uses a modified aldolase reactions and glyceraldehyde 161 

synthetase to convert two molecules of formaldehyde into one molecule of glyceraldehyde. 162 

Further details of the different methanol degradation pathways stoichiometries can be found 163 

in the comprehensive review of [39] and the supplementary materials. 164 

Sugar metabolization pathways 165 

For the catabolism of C5 and C6 sugars several different glycolytic pathways were analyzed. 166 

Firstly, we included the Embden-Meyerhof-Parnas (EMP) pathway and the Entner-Doudoroff 167 

due to their ubiquitousness amongst living organisms which also show a high ATP-yield (2 168 

resp. 1 ATP per glucose) [40]. However, the final product of these two pathways is pyruvate. 169 

The conversion to acetyl-CoA, the precursor of the analyzed products leads to the release of 170 

CO2, leading to a significant loss (33%) in carbon efficiency.  171 



While this could be mitigated using previously discussed methanol assimilating pathways 172 

fixating CO2 (for example the serine cycle or the rGly pathway) we included the non-173 

oxidative glycolysis introduced by Bogorad and colleagues [41]. This pathway avoids the 174 

release of CO2, which ensures that all carbon is captured in the product as potentially not all 175 

CO2 can be captured by CO2 fixation pathways. The non-oxidative pathway uses the 176 

enzyme phosphoketolase from Bifidobacterium adolescentis, which transforms one C6 177 

molecule into three molecules of acetyl-phosphate (AcP). AcP is later converted to acetyl-178 

CoA thanks to the enzyme phosphate acetyltranspherase from Bacillus subtilis. Clearly, 179 

without oxidation there is an energetic cost, one ATP is required for the formation of three 180 

AcP molecules. Nevertheless, the implementation of the non-oxidative glycolysis enabled 181 

higher yield conversions for various products, including ethanol or farnesene [42].  182 

 183 

Stoichiometric and thermodynamic analysis 184 

Most of the above pathways have been discussed and analyzed in earlier reviews [43,44], 185 

with focus on precursor and biomass synthesis as well as energy efficiency [31] [45]. A 186 

combination with sugar-based feedstocks and product pathways however, is not yet 187 

available.  188 

Here, we perform a stoichiometric and thermodynamic analysis under comparable 189 

constraints for all putative combinations and couple the analysis to product synthesis (Figure 190 

2). Therefore a stoichiometric model with reactions from the central carbon metabolism was 191 

taken and extended with selected methanol degradation and assimilation pathways. For 192 

methanol assimilation, we included known native pathways such as the RuMP cycle and the 193 

serine cycle as well as currently discussed synthetic pathways such as the homoserine and 194 

the reductive glycine pathway [45-47] (see Figure 1). Furthermore selected product pathways 195 

and non-oxidative glycolysis were included. Details on the networks and applied constraints 196 

can be found in the supplementary information and via github. 197 



 198 

Figure 2: Reaction design for the CO2 emission-free conversion of mixtures of glucose or 199 

xylose and methanol for production of selected AcCoA-derived compounds. With optimal 200 

chemical conversion, the depicted maximum molar product yields from the C6 or C5 sugars 201 

can be achieved, while the imbalance in the degree of reduction is resolved by appropriate 202 

addition of methanol.  For an optimal biochemical conversion, the proper choice of the 203 

methanol assimilation pathway is key to meet additional co-factor and thermodynamic 204 

conditions.  205 

In a first step, all combinations were tested for maximal product yield using parsimonious flux 206 

balance analysis (pFBA) [48], constraining CO2 emissions to zero and allowing free substrate 207 

mixtures of glucose or xylose in combination with methanol. For thermodynamic analysis, the 208 

values for Max-min Driving Force (MDF) were computed for each pathway combination 209 

achieving 100% carbon conservation in the previous analysis. The Max-min Driving Force 210 

(MDF) is a measure of the thermodynamic favorability of a pathway under physiological 211 

conditions[49]. It represents the smallest value of -ΔG' among all pathway reactions, 212 

achieved by optimizing metabolite concentrations to maximize the favorability of each 213 

reaction (-ΔG' as positive as possible). For MDF calculations,the following assumptions on 214 

substrate concentrations were made: i) for methanol, a high concentration of 1 mol/L was 215 

allowed. Methanol is a water-free substrate, allowing for addition without increasing the 216 

aqueous volume in a fed-batch or comparable setting; ii) for xylose and glucose, low residual 217 



concentrations were enforced (10 mmol/L), and iii) as the process should enable high 218 

product concentrations, a minimal concentration of 100 mmol/L was enforced. The combined 219 

stoichiometric and thermodynamic analysis under putative process conditions can deliver 220 

further insights for metabolic engineering [50,51].  221 

In general, the pathways stoichiometries yield different energetic and thermodynamic 222 

efficiencies. The RuMP Cycle shows the highest ATP yield, with one ATP produced per 223 

pyruvate molecule vs. 2 and 7 ATP consumed by the serine cycle and the RuBP cycle. On 224 

the other hand, when using methanol as only substrate, the serine cycle can produce acetyl-225 

CoA without carbon loss. Further described C1 assimilation pathways, RuBP and XuMP 226 

cycle were not included in the analysis. RuBP has a low energetic efficiency [31,52] [53] 227 

while the XuMP cycle “wastes” electrons by using an alcohol oxidase in the first step [54].  228 

Fine chemical for food and pharma with short product pathway: Noreugenin  229 

The biosynthesis of  the malonyl-CoA-derived polyketide noreugenin has been demonstrated 230 

experimentally feasible in C. glutamicum [55]. The calculations show that different 231 

combinations enable CO2emission-free production of noreugenin and the production is 232 

thermodynamically favoured for many combinations. The best two scenarios for the two 233 

substrate combinations are summarized in Table 1.  234 

Following the MDF calculations [56] when using glucose and methanol, the 235 

thermodynamically less favourable reactions are the carbon rearrangements required for the 236 

functioning of the non-oxidative glycolysis (Table 1). Still, with glucose and linear synthetic 237 

pathways for methanol, like GAPA and SACA being the highest yielding combinations, the 238 

MDF is as high as 7 kJ/mol. When using xylose and methanol, there is an increase in MDF: 239 

Implementing the combination of NOG with either the SACA or the formolase pathway an 240 

MDF of 10.59 kJ/mol is obtained. Experimentally, the functional implementation of NOG in 241 

combination with the SACA pathway to utilize methanol and xylose for noreugenin synthesis 242 

requires the expression of six heterologous genes from various sources. With this 243 

configuration, a focus must be put on the balanced gene expression to avoid intracellular 244 



accumulation of the cytotoxic pathway intermediate formaldehyde generated by the methanol 245 

dehydrogenase. 246 

Table 1: Top two pathway combinations per product and sugar substrate based on 247 

theoretical FBA and MDF calculations. The criteria used to select the top performers, in order 248 

of importance, were(1) MDF score, (2) electron efficiency (how many electrons from the 249 

substrates are present in the products) and (3) number of required non-native steps to be 250 

engineered. DAS: Dihydroxyacetone synthase, GAA: Glycolaldehyde assimilation, GAPA: 251 

Glycolaldehyde-allose 6-phosphate, NOG: Non-oxidative glycolysis, SACA: Synthetic acetyl-252 

CoA. All reactions and respective enzyme abbreviations are found in the supplementary 253 

information S1. Further simulation results are summarized in S3. 254 

Product Substrates Pathway 
Combination 

MDF (kJ, 
mol) 

Limiting reactions Non-native 
steps 

e-eff 
(%) 

CmolMEOH, 
CmolSugar 

PHB Glucose + 
MeOH 

NOG + DAS 
Pathway 

4.35 PTA, ACAT, PHBB, 
PHBC 

7 77 0.48 

NOG + GAPA1 

Pathway 

4.35 PTA, ACAT, PHBB, 
PHBC 

7 77 0.48 

Xylose + 
MeOH 

NOG + DAS 
Pathway 

4.35 PTA, ACAT, PHBB, 
PHBC 

7 76 0.51 

NOG + GAPA1 

Pathway 

4.28 PTA, ACAT, PHBB, 
PHBC 

8 76 0.51 

        

PHB 

w/enzy

me 

couplin

g 

Glucose + 
MeOH 

NOG + GAPA1 
Pathway 

5.60 PTA, ACAT_PHBB, 
PHBC 

7 77 0.48 

NOG + GAA1 
Pathway 

5.60 PTA, ACAT_PHBB, 
PHBC 

8 77 0.48 

Xylose + 
MeOH 

NOG+ GAPA1 
Pathway 

5.60 PTA, ACAT_PHBB, 
PHBC 

7 76 0.51 

NOG + GAA1 
Pathway 

5.60 PTA, ACAT_PHBB, 
PHBC 

8 76 0.51 

        

Noreug
enin 

Glucose + 
MeOH 

NOG + GAPA1  
Pathway 

7.00 PGI, RPI, RPE, TKT1, 
TAL 

5 60 0.67 

NOG + SACA2 
Pathway 

7.00 PGI, RPI, RPE, TKT1, 
TAL 

6 60 0.67 

Xylose + 
MeOH 

NOG + SACA1 
Pathway 

10.59 RPI, RPE, TKT1, TAL 6 59 0.70 

NOG + GAA1 
Pathway 

9.47 RPE, MDH, GALS, 
TALB_F178Y 

6 59 0.70 
        

BAME Glucose + 
MeOH 

NOG + GAPA1 
Pathway 

7.00 PGI, RPI, RPE, TKT1, 
TAL 

4 63 5.25 

NOG + GAA1 
Pathway 

7.00 PGI, RPI, RPE, TKT1, 
TAL 

5 63 5.25 

Xylose + 
MeOH 

NOG + SACA2 
Pathway 

10.59 RPI, RPE, TKT1, TAL 5 63 4.63 

NOG + GAA1 

Pathway 

9.47 RPE, MDH, GALS, 
TALB_F178Y 

5 63 4.63 

 255 



1 GAA und GAPA pathways have not been demonstrated in vivo [37,38] 256 

2 SACA pathway has been demonstrated in vivo, although with low substrate affinities [35] 257 

Bulk chemical, the bioplastic model molecule PHB: 258 

In contrast to noreugenin, the PHB production pathway also requires a reduction equivalent 259 

(NADH or NADPH) for the first step [57]. This reaction has been described as putative 260 

bottleneck in several studies [58]. This is also apparent from the MDF calculations, with a 261 

MDF of 4.35 kJ/mol in the best case. This picture changes when assuming a metabolic 262 

channel for acetoacetyl-CoA, i.e. coupling of the enzymes β-ketothiolase and acetoacetyl-263 

CoA reductase, as shown for a similar pathway by [59]. Now a higher MDF can be obtained, 264 

and there are pathway dependencies. With glucose and methanol, several combinations 265 

yield an MDF of 5.6 kJ/mol (Table 1). PTA, ACAT, PHBB, PHBC are the limiting reaction 266 

steps. Comparable results are obtained for xylose and methanol as substrates. In contrast to 267 

noreugenin the bottleneck is co-factor dependent, i.e. the NAD/NADH ratio limits the PHB 268 

synthesis pathway and MDF. Stoichiometrically and thermodynamically, the best 269 

combination include NOG for sugar degradation and C1 assimilation via DAS, GAA or GAPA 270 

depending on the used sugar or assumption on the product pathway channelling (Table 1). 271 

The heterologous expression of seven genes for the efficient C1-assimilation via DAS and 272 

glucose-utilization via NOG is technically no problem. During strain construction, attention 273 

should be kept on the expression of the dihydroxyacetone synthase gene and a sufficient 274 

regeneration of Xu5P as formaldehyde-acceptor for a rapid assimilation of cytotoxic 275 

formaldehyde. 276 

Biofuel, Fatty-acid methyl ester  277 

Short chain fatty acids like butyric acid or derivates such as BAME have a degree of 278 

reduction that fits in the range between methanol and sugar. Nevertheless, also for short 279 

chain, methanol becomes the dominating substrate with a ratio around 5:1 280 

(CmolMeOH:CmolSugar). The pathway is thermodynamically feasible with an MDF of up to 10.59 281 

kJ/mol for a combination of SACA and NOG. Although the natural RuMP pathway in 282 



combination with the xylose phosphate ketolase has a lower driving force (4.76 kJ/mol), we 283 

chose to discuss the implementation of this combination as RuMP is currently the best 284 

established methanol assimilation route. The thermodynamic bottlenecks are reactions of the 285 

pentose-phosphate pathway as well as methanol dehydrogenase (Table 1). The functional 286 

implementation of the RuMP-pathway (in E. coli) was performed several times, and in 287 

principal requires the expression of only three genes, i.e., a methanol dehydrogenase, a 3-288 

hexulose 6-phosphate synthase and a 6-phospho 3-hexuloisomerase. However, with this 289 

genetic setup, incorporation of methanol-derived carbon into central carbon metabolites is 290 

possible, but growth on methanol alone is not possible [60,61]. One of the main reasons is 291 

the delicate fine-tuning of relevant enzymatic activities to avoid metabolite depletion and 292 

ensure sufficient regeneration of ribulose-5-phosphate as acceptor of formaldehyde. 293 

Important steps towards engineered methylotrophy in E. coli were made by using FBA to 294 

identify methanol-dependent E. coli variants with high potential for adaptive laboratory 295 

evolution towards this goal [62]. In parallel, the conversion of E. coli to a synthetic 296 

methylotroph growing solely on methanol could be achieved [63] by following the proposed 297 

strategy by Keller et al., [62]. Starting point was a methanol-dependent strain with an 298 

incomplete RuMP cycle, which was subjected to laboratory evolution to efficiently use 299 

methanol as sole carbon source. Completion of the RuMP cycle, applying kinetic modeling 300 

and targeted engineering finally yielded a methylotrophic E. coli variant, which exhibited a 301 

doubling time of 8 hours and reaching a final OD600 of 1.9 (medium containing 400 mM 302 

methanol, starting OD600 of 0.1). Recent advances toward the generation of synthetic 303 

methylotrophs have been reviewed recently [64].  304 

The stoichiometric and thermodynamic results demonstrate the potential of using methanol 305 

as carbon and electron source, enabling CO2 free production with potentially high conversion 306 

rates, based on the high thermodynamic driving forces that can be achieved. Clearly, when 307 

implementing several heterologous pathways, significant fine-tuning will be required to 308 

achieve the metabolic optimum. 309 

  310 



Challenges and Perspectives 311 

Reaching net zero CO2 emission in bioprocesses is challenging and requires significant 312 

rerouting of metabolism. Nevertheless, recent advances in synthetic biology, but also 313 

engineering to obtain novel carbon feedstocks will allow to reduce and in the best case 314 

eliminate CO2 emissions. While here a specific collection of products has been discussed, 315 

there are many further products. Challenges to tackle remain in the product pathways, as 316 

many have a CO2 producing reaction and reassimilation will require cellular energy and 317 

inevitably also lead to losses. Here computational enzyme engineering could help to design 318 

new pathways [65] that have no decarboxylation step.  319 

Furthermore, products like long-chain fatty acids are so highly reduced, that a feedstock with 320 

even more electrons than methanol will be required. Putative, anaerobic methane 321 

degradation pathways were described [66] that could enable CO2 emission-free production 322 

for highly reduced products. Alternatively, the sugar substrate needs to be replaced by a 323 

more reduced feedstock. One possibility is the use of glycerol, with a reduction degree of 324 

4.67 e/C-atom, as a substitute for glucose or xylose. 325 

On the other end, less reduced products could be produced with cofeeding of higher oxidized 326 

substrates like formiate or even CO2 as proposed by [67]. To implement these alternative 327 

modules for substrate assimilation and product synthesis with balanced expression of 328 

required enzymes, a large number of strain variants needs to be constructed and tested. For 329 

this purpose, automation technologies for rational strain construction [68] and rapid 330 

phenotyping of entire libraries [69] are being established at a rapid pace in various labs. 331 

Next to the challenges in designing the host, process design will have to provide well-defined 332 

multiple-substrate feeding to enforce a defined uptake. These processes will be challenging 333 

to monitor and control, especially at large scale with mixing inhomogeneities. Here, the 334 

distribution of oxygen and the two carbon sources could lead to a rapidly changing 335 

environment for the single microorganisms [70]. How highly engineered organisms react to 336 



changing substrate mixtures needs to be analyzed. Adaptive Laboratory Evolution (ALE) will 337 

play a crucial role in several steps of strain design and scale-up [71,72]. 338 

Another challenge is the performance of the de novo reactions of synthetic pathways like 339 

SACA or formolase, which suffer from low formaldehyde affinity (Km=165 mM for GALS and 340 

Km=51 mM for ACPS) [35] or low catalytic efficiency (4.7 M-1s-1 for formolase) [34]. Also, the 341 

GAA and GAPA pathways have only been proved in vitro [37,38]. While these pathways rank 342 

among the best performers in our theoretical simulation, further efforts in enzyme and 343 

metabolic engineering are required. Currently validated methanol utilization pathways include 344 

the RumP cycle and the rGly pathway [33,63]. However, based on the simulations, only the 345 

RumP cycle could support combined use of sugars and methanol with no CO2 emissions, 346 

albeit with lower MDF scores, as discussed previously (for information about the 347 

performance of the pathway combinations not shown in Table 1 please refer to the 348 

information provided in Supplementary Information 3) 349 

Supplementary Information 350 

All codes are available on a github repository: https://github.com/sawahl/net_zero_c1.git. The 351 

repository also includes the supplementary files. 352 
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Highlights: 559 

• Recent synthetic biology approaches, combining enzyme engineering and pathway 560 

design allow for many methanol assimilation routes 561 

• Several, reduced products can be synthesized from a mixture of sugar and methanol 562 

as substrates 563 

• Combined stoichiometric and thermodynamic analysis point to most promising 564 

pathways 565 

• For several products zero CO2 production can be achieved theoretically 566 

 567 

Annotated papers: 568 

van Winden WA, Mans R, Breestraat S, Verlinden RAJ, Mielgo-Gmez l, de Hulster EAF, de 569 

Bruijn HMCJ, Noorman HJ: Towards closed carbon loop fermentations: Cofeeding of 570 

Yarrowia lipolytica with glucose and formic acid. Biotechnology and Bioengineering 2022, 571 

119:2142--2151  572 

* The work experimentally demonstrates the potential of offgas carbon (CO2) recycling by 573 

electrochemical reduction. The approach is general and could increase the carbon yield for 574 

many processes. 575 

 576 

Chen FYH, Jung H-W, Tsuei C-Y, Liao JC: Converting Escherichia coli to a Synthetic 577 

Methylotroph Growing Solely on Methanol. Cell 2020, 182:933-946.e914. 578 

** Impressive engineering work to obtain a fully methylotrophic E. coli strain. The application 579 

of genetic engineering, modeling and extensive laboratory evolution enabled growth, at about 580 

half the growth rate of natural, methylotrophic organisms. The work highlights the challenging 581 

aspects of engineering metabolism to a new substrate and how modeling and laboratory 582 

evolution can be applied to de-bottleneck the pathway. 583 



 584 

Beber ME, Gollub MG, Mozaffari D, Shebek KM, Flamholz AI, Milo R, Noor E: eQuilibrator 585 

3.0: a database solution for thermodynamic constant estimation. Nucleic acids research 586 

2022, 50:D603--D609 , pmid = 34850162 587 

* Beber et al. provide a comprehensive toolbox to easily analyze the thermodynamics of 588 

reactions and pathways. Such tools are crucial for the rapid comparison of putative 589 

engineering strategies. 590 

Klein et al. (2022). Unravelling Formaldehyde Metabolism in Bacteria: Road towards 591 

Synthetic Methylotrophy. Microorganisms, 10(2), 220. 592 

* This review presents an extensive an in-depth analysis of the multiple metabolic routes for 593 

formaldehyde detoxification, assimilation via natural and synthetic pathways, as well as 594 

formaldehyde metabolic regulation. 595 

 596 

Cotton et al: Renewable methanol and formate as microbial feedstocks. Curr Opin Biotechnol 597 

2020, 62:168-180. 598 

* This article provides a comparison based on Flux Balance Anaylsis (FBA) of the yields of 599 

several natural and synthetic pathways for the production of biomass, pyruvate and acetyl-600 

CoA , using methanol and formate as substrates.  601 


