001020444 001__ 1020444
001020444 005__ 20250204113746.0
001020444 0247_ $$2doi$$a10.1039/D3CP04743A
001020444 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-00164
001020444 0247_ $$2pmid$$a38693897
001020444 0247_ $$2WOS$$aWOS:001216696500001
001020444 037__ $$aFZJ-2024-00164
001020444 082__ $$a540
001020444 1001_ $$0P:(DE-Juel1)179453$$aSchalenbach, Maximilian$$b0$$eCorresponding author
001020444 245__ $$aHow Microstructures, Oxide Layers, and Charge Transfer Reactions influence Double Layer Capacitances
001020444 260__ $$aCambridge$$bRSC Publ.$$c2024
001020444 3367_ $$2DRIVER$$aarticle
001020444 3367_ $$2DataCite$$aOutput Types/Journal article
001020444 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1715942699_28170
001020444 3367_ $$2BibTeX$$aARTICLE
001020444 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001020444 3367_ $$00$$2EndNote$$aJournal Article
001020444 520__ $$aVarying the electrode potential rearranges the charges in the double layer (DL) of an electrochemical interface by a resistive-capacitive current response. The capacitances of such charge relocations are frequently used in the research community to estimate electrochemical active surface areas (ECSAs), yet the reliability of this methodology is insufficiently examined. Here, the relation of capacitances and ECSAs is critically assessed with electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) data on polished (Au, Ti, Ru, Pt, Ni, glassy carbon, graphite plate) and porous (carbon fleeces) electrodes. By investigating this variety of electrodes, the frequency-dependencies observed in the measured capacitances are shown to arise from the inherent resistive-capacitive DL response, charge transfer reactions, and resistively damped capacitive currents in microstructures (such as pores, pinholes, or cracks). These frequency-dependencies are typically overlooked when capacitances are related to ECSAs. The capacitance at the specimen-characteristic relaxation frequency of the resistive-capacitive DL response is proposed as a standardized capacitance-metric to estimate ECSAs. In 1 M perchloric acid, the polished gold electrode and the high-surface area carbon fleeces show ratios of capacitance-metric over surface-area of around 3.7 µF/cm². Resistively damped currents in microstructures and low-conducting oxide layers are shown to complicate trustworthy capacitance-based estimations of ECSAs. In the second part of this study, advanced equivalent circuits models to describe the measured EIS and CV responses are presented.
001020444 536__ $$0G:(DE-HGF)POF4-1232$$a1232 - Power-based Fuels and Chemicals (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001020444 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001020444 65017 $$0V:(DE-MLZ)GC-2003-2016$$2V:(DE-HGF)$$aOthers$$x0
001020444 7001_ $$0P:(DE-Juel1)176196$$aRaijmakers, Luc$$b1
001020444 7001_ $$0P:(DE-Juel1)178824$$aSelmert, Victor$$b2
001020444 7001_ $$0P:(DE-Juel1)171715$$aKretzschmar, Ansgar$$b3
001020444 7001_ $$0P:(DE-Juel1)162243$$aDurmus, Yasin Emre$$b4
001020444 7001_ $$0P:(DE-Juel1)161208$$aTempel, Hermann$$b5
001020444 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b6$$ufzj
001020444 773__ $$0PERI:(DE-600)1476244-4$$a10.1039/D3CP04743A$$gp. 10.1039.D3CP04743A$$n19$$p14288-14304 $$tPhysical chemistry, chemical physics$$v26$$x1463-9076$$y2024
001020444 8564_ $$uhttps://juser.fz-juelich.de/record/1020444/files/d3cp04743a.pdf$$yOpenAccess
001020444 8564_ $$uhttps://juser.fz-juelich.de/record/1020444/files/d3cp04743a.gif?subformat=icon$$xicon$$yOpenAccess
001020444 8564_ $$uhttps://juser.fz-juelich.de/record/1020444/files/d3cp04743a.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001020444 8564_ $$uhttps://juser.fz-juelich.de/record/1020444/files/d3cp04743a.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001020444 8564_ $$uhttps://juser.fz-juelich.de/record/1020444/files/d3cp04743a.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001020444 8767_ $$d2024-02-15$$eHybrid-OA$$jPublish and Read
001020444 909CO $$ooai:juser.fz-juelich.de:1020444$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
001020444 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179453$$aForschungszentrum Jülich$$b0$$kFZJ
001020444 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176196$$aForschungszentrum Jülich$$b1$$kFZJ
001020444 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178824$$aForschungszentrum Jülich$$b2$$kFZJ
001020444 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171715$$aForschungszentrum Jülich$$b3$$kFZJ
001020444 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162243$$aForschungszentrum Jülich$$b4$$kFZJ
001020444 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161208$$aForschungszentrum Jülich$$b5$$kFZJ
001020444 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b6$$kFZJ
001020444 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b6$$kRWTH
001020444 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1232$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001020444 9141_ $$y2024
001020444 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001020444 915pc $$0PC:(DE-HGF)0110$$2APC$$aTIB: Royal Society of Chemistry 2021
001020444 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-21
001020444 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-21
001020444 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001020444 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-09$$wger
001020444 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-09
001020444 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-09
001020444 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-09
001020444 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-09
001020444 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-09
001020444 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS CHEM CHEM PHYS : 2022$$d2024-12-09
001020444 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-09
001020444 920__ $$lyes
001020444 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
001020444 9801_ $$aAPC
001020444 9801_ $$aFullTexts
001020444 980__ $$ajournal
001020444 980__ $$aVDB
001020444 980__ $$aUNRESTRICTED
001020444 980__ $$aI:(DE-Juel1)IEK-9-20110218
001020444 980__ $$aAPC
001020444 981__ $$aI:(DE-Juel1)IET-1-20110218