001020445 001__ 1020445
001020445 005__ 20240226075301.0
001020445 037__ $$aFZJ-2024-00165
001020445 1001_ $$0P:(DE-Juel1)186673$$aAntognini Silva, David$$b0$$eFirst author$$ufzj
001020445 1112_ $$aDPG Spring Meeting "SKM 2023"$$cDresden$$d2023-03-27 - 2023-03-31$$wGermany
001020445 245__ $$aYu-Shiba-Rusinov impurity bound states in superconductors from first principles
001020445 260__ $$c2023
001020445 3367_ $$033$$2EndNote$$aConference Paper
001020445 3367_ $$2DataCite$$aOther
001020445 3367_ $$2BibTeX$$aINPROCEEDINGS
001020445 3367_ $$2DRIVER$$aconferenceObject
001020445 3367_ $$2ORCID$$aLECTURE_SPEECH
001020445 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1704791051_18680$$xOther
001020445 520__ $$aMaterials that combine magnetism, spin-orbit interaction and conventional s-wave superconductivity are a suitable platform to study Majorana zero modes (MZM) [1], that can be used as building blocks of fault-tolerant topological qubits. In general, magnetic impurities in superconductors leads to localized Yu-Shiba-Rusinov (YSR) states at the impurity [2]. Understanding their interplay with MZMs is crucial to achieve topological quantum computers in the future.In our work, we implemented the Bogoliubov-de Gennes (BdG) formalism in the juKKR Korringa-Kohn-Rostoker Green function impurity code (https://iffgit.fz-juelich.de/kkr/jukkr) to allow the material-specific description of defects perfectly embedded in superconductors from first principles. We apply it to an Fe impurity embedded in bulk Pb in the normal and superconducting state, then analyse the YSR states of different magnetic transition-metal adatoms placed on a superconducting Nb(110) surface where the influence of the impurity-substrate distance on the energy of the YSR states is discussed.[1] Nadj-Perge et al., Science 346, 6209 (2014)[2] L. Yu, Acta Physica Sinica 21, 75 (1965), H. Shiba, Prog. Theor. Phys. 40, 435 (1968) A. I. Rusinov, Sov. J. Exp. Theor. Phys. 29, 1101 (1969)
001020445 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001020445 536__ $$0G:(GEPRIS)390534769$$aDFG project 390534769 - EXC 2004: Materie und Licht für Quanteninformation (ML4Q) (390534769)$$c390534769$$x1
001020445 7001_ $$0P:(DE-Juel1)157882$$aRüssmann, Philipp$$b1$$eCollaboration author$$ufzj
001020445 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b2$$eCollaboration author$$ufzj
001020445 909CO $$ooai:juser.fz-juelich.de:1020445$$pVDB
001020445 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186673$$aForschungszentrum Jülich$$b0$$kFZJ
001020445 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157882$$aForschungszentrum Jülich$$b1$$kFZJ
001020445 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b2$$kFZJ
001020445 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001020445 9141_ $$y2023
001020445 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
001020445 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
001020445 980__ $$aconf
001020445 980__ $$aVDB
001020445 980__ $$aI:(DE-Juel1)IAS-1-20090406
001020445 980__ $$aI:(DE-Juel1)PGI-1-20110106
001020445 980__ $$aUNRESTRICTED