Home > Publications database > Yu-Shiba-Rusinov impurity bound states in superconductors from first principles > print |
001 | 1020445 | ||
005 | 20240226075301.0 | ||
037 | _ | _ | |a FZJ-2024-00165 |
100 | 1 | _ | |a Antognini Silva, David |0 P:(DE-Juel1)186673 |b 0 |e First author |u fzj |
111 | 2 | _ | |a DPG Spring Meeting "SKM 2023" |c Dresden |d 2023-03-27 - 2023-03-31 |w Germany |
245 | _ | _ | |a Yu-Shiba-Rusinov impurity bound states in superconductors from first principles |
260 | _ | _ | |c 2023 |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a Other |2 DataCite |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a LECTURE_SPEECH |2 ORCID |
336 | 7 | _ | |a Conference Presentation |b conf |m conf |0 PUB:(DE-HGF)6 |s 1704791051_18680 |2 PUB:(DE-HGF) |x Other |
520 | _ | _ | |a Materials that combine magnetism, spin-orbit interaction and conventional s-wave superconductivity are a suitable platform to study Majorana zero modes (MZM) [1], that can be used as building blocks of fault-tolerant topological qubits. In general, magnetic impurities in superconductors leads to localized Yu-Shiba-Rusinov (YSR) states at the impurity [2]. Understanding their interplay with MZMs is crucial to achieve topological quantum computers in the future.In our work, we implemented the Bogoliubov-de Gennes (BdG) formalism in the juKKR Korringa-Kohn-Rostoker Green function impurity code (https://iffgit.fz-juelich.de/kkr/jukkr) to allow the material-specific description of defects perfectly embedded in superconductors from first principles. We apply it to an Fe impurity embedded in bulk Pb in the normal and superconducting state, then analyse the YSR states of different magnetic transition-metal adatoms placed on a superconducting Nb(110) surface where the influence of the impurity-substrate distance on the energy of the YSR states is discussed.[1] Nadj-Perge et al., Science 346, 6209 (2014)[2] L. Yu, Acta Physica Sinica 21, 75 (1965), H. Shiba, Prog. Theor. Phys. 40, 435 (1968) A. I. Rusinov, Sov. J. Exp. Theor. Phys. 29, 1101 (1969) |
536 | _ | _ | |a 5211 - Topological Matter (POF4-521) |0 G:(DE-HGF)POF4-5211 |c POF4-521 |f POF IV |x 0 |
536 | _ | _ | |a DFG project 390534769 - EXC 2004: Materie und Licht für Quanteninformation (ML4Q) (390534769) |0 G:(GEPRIS)390534769 |c 390534769 |x 1 |
700 | 1 | _ | |a Rüssmann, Philipp |0 P:(DE-Juel1)157882 |b 1 |e Collaboration author |u fzj |
700 | 1 | _ | |a Blügel, Stefan |0 P:(DE-Juel1)130548 |b 2 |e Collaboration author |u fzj |
909 | C | O | |o oai:juser.fz-juelich.de:1020445 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)186673 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)157882 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)130548 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-521 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Materials |9 G:(DE-HGF)POF4-5211 |x 0 |
914 | 1 | _ | |y 2023 |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-1-20090406 |k IAS-1 |l Quanten-Theorie der Materialien |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-1-20110106 |k PGI-1 |l Quanten-Theorie der Materialien |x 1 |
980 | _ | _ | |a conf |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IAS-1-20090406 |
980 | _ | _ | |a I:(DE-Juel1)PGI-1-20110106 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|