001020446 001__ 1020446
001020446 005__ 20240226075301.0
001020446 037__ $$aFZJ-2024-00166
001020446 1001_ $$0P:(DE-Juel1)186673$$aAntognini Silva, David$$b0$$eFirst author$$ufzj
001020446 1112_ $$aEMRS Spring Meeting 2023$$cStrasbourg$$d2023-05-29 - 2023-06-02$$wFrance
001020446 245__ $$aMaterials for quantum computing : Magnetic impurities embedded in superconductors from first principles
001020446 260__ $$c2023
001020446 3367_ $$033$$2EndNote$$aConference Paper
001020446 3367_ $$2DataCite$$aOther
001020446 3367_ $$2BibTeX$$aINPROCEEDINGS
001020446 3367_ $$2DRIVER$$aconferenceObject
001020446 3367_ $$2ORCID$$aLECTURE_SPEECH
001020446 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1704787079_19180$$xOther
001020446 520__ $$aIn the last decades, immense technological and scientific progress was made thanks to the increasing available calculation power provided by the exponential growth of processor capability. However, the miniaturization of transistors is reaching the physical limits of classical processor architectures. In the future, the next big leap for scientific computing is expected to come from the realization of quantum computers. Making more performant quantum computing platforms requires to overcome challenges of decoherence and dephasing of the qubits that form the building blocks for quantum computers. Topological protection is a viable way towards the realization of fault tolerant qubits.Materials that combine magnetism, spin-orbit interaction and conventional s-wave superconductivity are a suitable platform to study Majorana zero modes (MZM) [1], that can be used as building blocks for fault-tolerant topological qubits. In general, magnetic impurities in superconductors leads to localized Yu-Shiba-Rusinov (YSR) states at the impurity [2]. Understanding their interplay with MZMs is crucial to achieve topological quantum computers in the future. In our work, we implemented the Bogoliubov-de Gennes (BdG) formalism in the juKKR Korringa-Kohn-Rostoker Green function impurity code [3] to allow the material-specific description of defects perfectly embedded  in superconductors from first principles. We apply it to an Fe impurity embedded in bulk Pb in the normal and superconducting state, then analyze the YSR states of different magnetic transition-metal adatoms placed on a superconducting Nb(110) surface where the influence of the impurity-substrate distance on the energy of the YSR states is discussed.[1]    Nadj-Perge et al., Science 346, 6209 (2014).[2]    L. Yu, Acta Physica Sinica 21, 75 (1965); H. Shiba, Prog. Theor. Phys. 40, 435 (1968); A. I. Rusinov, Sov. J. Exp. Theor. Phys. 29, 1101 (1969).[3]    https://iffgit.fz-juelich.de/kkr/jukkr
001020446 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001020446 536__ $$0G:(GEPRIS)390534769$$aDFG project 390534769 - EXC 2004: Materie und Licht für Quanteninformation (ML4Q) (390534769)$$c390534769$$x1
001020446 7001_ $$0P:(DE-Juel1)157882$$aRüssmann, Philipp$$b1$$eCollaboration author$$ufzj
001020446 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b2$$eCollaboration author$$ufzj
001020446 909CO $$ooai:juser.fz-juelich.de:1020446$$pVDB
001020446 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186673$$aForschungszentrum Jülich$$b0$$kFZJ
001020446 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157882$$aForschungszentrum Jülich$$b1$$kFZJ
001020446 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b2$$kFZJ
001020446 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001020446 9141_ $$y2023
001020446 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
001020446 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
001020446 980__ $$aconf
001020446 980__ $$aVDB
001020446 980__ $$aI:(DE-Juel1)IAS-1-20090406
001020446 980__ $$aI:(DE-Juel1)PGI-1-20110106
001020446 980__ $$aUNRESTRICTED