Home > Publications database > Materials for quantum computing : Magnetic impurities embedded in superconductors from first principles > print |
001 | 1020446 | ||
005 | 20240226075301.0 | ||
037 | _ | _ | |a FZJ-2024-00166 |
100 | 1 | _ | |a Antognini Silva, David |0 P:(DE-Juel1)186673 |b 0 |e First author |u fzj |
111 | 2 | _ | |a EMRS Spring Meeting 2023 |c Strasbourg |d 2023-05-29 - 2023-06-02 |w France |
245 | _ | _ | |a Materials for quantum computing : Magnetic impurities embedded in superconductors from first principles |
260 | _ | _ | |c 2023 |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a Other |2 DataCite |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a LECTURE_SPEECH |2 ORCID |
336 | 7 | _ | |a Conference Presentation |b conf |m conf |0 PUB:(DE-HGF)6 |s 1704787079_19180 |2 PUB:(DE-HGF) |x Other |
520 | _ | _ | |a In the last decades, immense technological and scientific progress was made thanks to the increasing available calculation power provided by the exponential growth of processor capability. However, the miniaturization of transistors is reaching the physical limits of classical processor architectures. In the future, the next big leap for scientific computing is expected to come from the realization of quantum computers. Making more performant quantum computing platforms requires to overcome challenges of decoherence and dephasing of the qubits that form the building blocks for quantum computers. Topological protection is a viable way towards the realization of fault tolerant qubits.Materials that combine magnetism, spin-orbit interaction and conventional s-wave superconductivity are a suitable platform to study Majorana zero modes (MZM) [1], that can be used as building blocks for fault-tolerant topological qubits. In general, magnetic impurities in superconductors leads to localized Yu-Shiba-Rusinov (YSR) states at the impurity [2]. Understanding their interplay with MZMs is crucial to achieve topological quantum computers in the future. In our work, we implemented the Bogoliubov-de Gennes (BdG) formalism in the juKKR Korringa-Kohn-Rostoker Green function impurity code [3] to allow the material-specific description of defects perfectly embedded in superconductors from first principles. We apply it to an Fe impurity embedded in bulk Pb in the normal and superconducting state, then analyze the YSR states of different magnetic transition-metal adatoms placed on a superconducting Nb(110) surface where the influence of the impurity-substrate distance on the energy of the YSR states is discussed.[1] Nadj-Perge et al., Science 346, 6209 (2014).[2] L. Yu, Acta Physica Sinica 21, 75 (1965); H. Shiba, Prog. Theor. Phys. 40, 435 (1968); A. I. Rusinov, Sov. J. Exp. Theor. Phys. 29, 1101 (1969).[3] https://iffgit.fz-juelich.de/kkr/jukkr |
536 | _ | _ | |a 5211 - Topological Matter (POF4-521) |0 G:(DE-HGF)POF4-5211 |c POF4-521 |f POF IV |x 0 |
536 | _ | _ | |a DFG project 390534769 - EXC 2004: Materie und Licht für Quanteninformation (ML4Q) (390534769) |0 G:(GEPRIS)390534769 |c 390534769 |x 1 |
700 | 1 | _ | |a Rüssmann, Philipp |0 P:(DE-Juel1)157882 |b 1 |e Collaboration author |u fzj |
700 | 1 | _ | |a Blügel, Stefan |0 P:(DE-Juel1)130548 |b 2 |e Collaboration author |u fzj |
909 | C | O | |o oai:juser.fz-juelich.de:1020446 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)186673 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)157882 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)130548 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-521 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Materials |9 G:(DE-HGF)POF4-5211 |x 0 |
914 | 1 | _ | |y 2023 |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-1-20090406 |k IAS-1 |l Quanten-Theorie der Materialien |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-1-20110106 |k PGI-1 |l Quanten-Theorie der Materialien |x 1 |
980 | _ | _ | |a conf |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IAS-1-20090406 |
980 | _ | _ | |a I:(DE-Juel1)PGI-1-20110106 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|