001     1020446
005     20240226075301.0
037 _ _ |a FZJ-2024-00166
100 1 _ |a Antognini Silva, David
|0 P:(DE-Juel1)186673
|b 0
|e First author
|u fzj
111 2 _ |a EMRS Spring Meeting 2023
|c Strasbourg
|d 2023-05-29 - 2023-06-02
|w France
245 _ _ |a Materials for quantum computing : Magnetic impurities embedded in superconductors from first principles
260 _ _ |c 2023
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1704787079_19180
|2 PUB:(DE-HGF)
|x Other
520 _ _ |a In the last decades, immense technological and scientific progress was made thanks to the increasing available calculation power provided by the exponential growth of processor capability. However, the miniaturization of transistors is reaching the physical limits of classical processor architectures. In the future, the next big leap for scientific computing is expected to come from the realization of quantum computers. Making more performant quantum computing platforms requires to overcome challenges of decoherence and dephasing of the qubits that form the building blocks for quantum computers. Topological protection is a viable way towards the realization of fault tolerant qubits.Materials that combine magnetism, spin-orbit interaction and conventional s-wave superconductivity are a suitable platform to study Majorana zero modes (MZM) [1], that can be used as building blocks for fault-tolerant topological qubits. In general, magnetic impurities in superconductors leads to localized Yu-Shiba-Rusinov (YSR) states at the impurity [2]. Understanding their interplay with MZMs is crucial to achieve topological quantum computers in the future. In our work, we implemented the Bogoliubov-de Gennes (BdG) formalism in the juKKR Korringa-Kohn-Rostoker Green function impurity code [3] to allow the material-specific description of defects perfectly embedded in superconductors from first principles. We apply it to an Fe impurity embedded in bulk Pb in the normal and superconducting state, then analyze the YSR states of different magnetic transition-metal adatoms placed on a superconducting Nb(110) surface where the influence of the impurity-substrate distance on the energy of the YSR states is discussed.[1] Nadj-Perge et al., Science 346, 6209 (2014).[2] L. Yu, Acta Physica Sinica 21, 75 (1965); H. Shiba, Prog. Theor. Phys. 40, 435 (1968); A. I. Rusinov, Sov. J. Exp. Theor. Phys. 29, 1101 (1969).[3] https://iffgit.fz-juelich.de/kkr/jukkr
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
536 _ _ |a DFG project 390534769 - EXC 2004: Materie und Licht für Quanteninformation (ML4Q) (390534769)
|0 G:(GEPRIS)390534769
|c 390534769
|x 1
700 1 _ |a Rüssmann, Philipp
|0 P:(DE-Juel1)157882
|b 1
|e Collaboration author
|u fzj
700 1 _ |a Blügel, Stefan
|0 P:(DE-Juel1)130548
|b 2
|e Collaboration author
|u fzj
909 C O |o oai:juser.fz-juelich.de:1020446
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)186673
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)157882
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130548
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
914 1 _ |y 2023
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21