001020500 001__ 1020500
001020500 005__ 20250225084318.0
001020500 0247_ $$2doi$$a10.1016/j.crmeth.2023.100681
001020500 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-00219
001020500 0247_ $$2pmid$$a38183979
001020500 0247_ $$2WOS$$aWOS:001171298600001
001020500 037__ $$aFZJ-2024-00219
001020500 041__ $$aEnglish
001020500 082__ $$a610
001020500 1001_ $$0P:(DE-Juel1)171572$$aGutzen, Robin$$b0$$eCorresponding author
001020500 245__ $$aA modular and adaptable analysis pipeline to compare slow cerebral rhythms across heterogeneous datasets
001020500 260__ $$aCambridge, MA$$bCell Press$$c2024
001020500 3367_ $$2DRIVER$$aarticle
001020500 3367_ $$2DataCite$$aOutput Types/Journal article
001020500 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1710500822_28984
001020500 3367_ $$2BibTeX$$aARTICLE
001020500 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001020500 3367_ $$00$$2EndNote$$aJournal Article
001020500 520__ $$aNeuroscience is moving toward a more integrative discipline where understanding brain function requires consolidating the accumulated evidence seen across experiments, species, and measurement techniques. A remaining challenge on that path is integrating such heterogeneous data into analysis workflows such that consistent and comparable conclusions can be distilled as an experimental basis for models and theories. Here, we propose a solution in the context of slow-wave activity (<1 Hz), which occurs during unconscious brain states like sleep and general anesthesia and is observed across diverse experimental approaches. We address the issue of integrating and comparing heterogeneous data by conceptualizing a general pipeline design that is adaptable to a variety of inputs and applications. Furthermore, we present the Collaborative Brain Wave Analysis Pipeline (Cobrawap) as a concrete, reusable software implementation to perform broad, detailed, and rigorous comparisons of slow-wave characteristics across multiple, openly available electrocorticography (ECoG) and calcium imaging datasets.
001020500 536__ $$0G:(DE-HGF)POF4-5235$$a5235 - Digitization of Neuroscience and User-Community Building (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001020500 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x1
001020500 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x2
001020500 536__ $$0G:(DE-Juel1)JL SMHB-2021-2027$$aJL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)$$cJL SMHB-2021-2027$$x3
001020500 536__ $$0G:(GEPRIS)491111487$$aDFG project 491111487 - Open-Access-Publikationskosten / 2022 - 2024 / Forschungszentrum Jülich (OAPKFZJ) (491111487)$$c491111487$$x4
001020500 536__ $$0G:(DE-Juel-1)iBehave-20220812$$aAlgorithms of Adaptive Behavior and their Neuronal Implementation in Health and Disease (iBehave-20220812)$$ciBehave-20220812$$x5
001020500 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001020500 7001_ $$0P:(DE-HGF)0$$aDe Bonis, Giulia$$b1
001020500 7001_ $$0P:(DE-HGF)0$$aDe Luca, Chiara$$b2
001020500 7001_ $$0P:(DE-HGF)0$$aPastorelli, Elena$$b3
001020500 7001_ $$0P:(DE-HGF)0$$aCapone, Cristiano$$b4
001020500 7001_ $$0P:(DE-HGF)0$$aAllegra Mascaro, Anna Letizia$$b5
001020500 7001_ $$0P:(DE-HGF)0$$aResta, Francesco$$b6
001020500 7001_ $$0P:(DE-HGF)0$$aManasanch, Arnau$$b7
001020500 7001_ $$0P:(DE-HGF)0$$aPavone, Francesco Saverio$$b8
001020500 7001_ $$0P:(DE-HGF)0$$aSanchez-Vives, Maria V.$$b9
001020500 7001_ $$0P:(DE-HGF)0$$aMattia, Maurizio$$b10
001020500 7001_ $$0P:(DE-Juel1)144168$$aGrün, Sonja$$b11
001020500 7001_ $$0P:(DE-HGF)0$$aPaolucci, Pier Stanislao$$b12
001020500 7001_ $$0P:(DE-Juel1)144807$$aDenker, Michael$$b13
001020500 773__ $$0PERI:(DE-600)3091714-1$$a10.1016/j.crmeth.2023.100681$$gp. 100681 -$$n1$$p100681$$tCell reports / Methods$$v4$$x2667-2375$$y2024
001020500 8564_ $$uhttps://juser.fz-juelich.de/record/1020500/files/1-s2.0-S266723752300365X-main-1.pdf$$yOpenAccess
001020500 8564_ $$uhttps://juser.fz-juelich.de/record/1020500/files/1-s2.0-S266723752300365X-main-1.gif?subformat=icon$$xicon$$yOpenAccess
001020500 8564_ $$uhttps://juser.fz-juelich.de/record/1020500/files/1-s2.0-S266723752300365X-main-1.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001020500 8564_ $$uhttps://juser.fz-juelich.de/record/1020500/files/1-s2.0-S266723752300365X-main-1.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001020500 8564_ $$uhttps://juser.fz-juelich.de/record/1020500/files/1-s2.0-S266723752300365X-main-1.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001020500 8767_ $$8E-2024-01465-b$$92025-02-19$$a1200211749$$d2025-02-24$$eAPC$$jZahlung erfolgt
001020500 8767_ $$8E-2024-01465-b$$92025-02-19$$d2025-02-24$$eAPC$$jZahlung angewiesen
001020500 909CO $$ooai:juser.fz-juelich.de:1020500$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001020500 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171572$$aForschungszentrum Jülich$$b0$$kFZJ
001020500 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144168$$aForschungszentrum Jülich$$b11$$kFZJ
001020500 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144807$$aForschungszentrum Jülich$$b13$$kFZJ
001020500 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5235$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001020500 9141_ $$y2024
001020500 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001020500 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-27
001020500 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-04-27T10:46:44Z
001020500 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-04-27T10:46:44Z
001020500 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-27
001020500 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001020500 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2022-04-27T10:46:44Z
001020500 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-27
001020500 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCELL REP METHODS : 2022$$d2024-12-16
001020500 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-16
001020500 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-16
001020500 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-16
001020500 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2024-12-16
001020500 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-16
001020500 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-16
001020500 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-16
001020500 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001020500 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001020500 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001020500 915pc $$0PC:(DE-HGF)0125$$2APC$$aDEAL: Elsevier 09/01/2023
001020500 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001020500 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
001020500 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lComputational and Systems Neuroscience$$x1
001020500 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
001020500 9801_ $$aFullTexts
001020500 980__ $$ajournal
001020500 980__ $$aVDB
001020500 980__ $$aI:(DE-Juel1)INM-6-20090406
001020500 980__ $$aI:(DE-Juel1)IAS-6-20130828
001020500 980__ $$aI:(DE-Juel1)INM-10-20170113
001020500 980__ $$aUNRESTRICTED
001020500 980__ $$aAPC
001020500 981__ $$aI:(DE-Juel1)IAS-6-20130828