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MOTIVATION Neuroscience is composed of a multitude of domains with specific approaches to measure
and analyze neural data. These approaches encompass various temporal and spatial scales, species, and
measurement techniques that have traditionally existed in isolation. Only recently has there been a growing
recognition of the need to integrate these diverse perspectives. This integration is particularly relevant in
computational neuroscience, where the creation of large, biologically realistic models depends upon the
availability of comprehensive reference data for calibrating and validating their dynamics. A prominent
feature of neural network dynamics is their spatiotemporal organization of activity, such as slow-wave ac-
tivity (<1 Hz). Slow waves are consistently observed in contexts like anesthesia and NREM sleep across
numerous measurement techniques. In this study, we aimed at exploring how an integrative, multi-modal
pipeline can serve as a bridge between distinct neuroscience domains encompassing specific measure-
ment types, experimental conditions, and both animal and computational models.
SUMMARY
Neuroscience is moving toward a more integrative discipline where understanding brain function requires
consolidating the accumulated evidence seen across experiments, species, and measurement techniques.
A remaining challenge on that path is integrating such heterogeneous data into analysis workflows such that
consistent and comparable conclusions can be distilled as an experimental basis for models and theories.
Here, we propose a solution in the context of slow-wave activity (<1 Hz), which occurs during unconscious
brain states like sleep and general anesthesia and is observed across diverse experimental approaches. We
address the issue of integrating and comparing heterogeneous data by conceptualizing a general pipeline
design that is adaptable to a variety of inputs and applications. Furthermore, we present the Collaborative
BrainWave Analysis Pipeline (Cobrawap) as a concrete, reusable software implementation to perform broad,
detailed, and rigorous comparisons of slow-wave characteristics across multiple, openly available electro-
corticography (ECoG) and calcium imaging datasets.
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INTRODUCTION

Today’s research landscape excels in an unprecedented rich-

ness of experimental data and methodologies. In neurophysi-

ology, this enables an array of research applications and a better

calibration of models of brain dynamics and function. However,

recording techniques differ considerably in the way in which they

capture neural activity. These differences1,2 include the type of

signal (e.g., electric activity, magnetic fields, fluctuations of cal-

cium concentrations, or radiant isotopes) and the scales on

which the signal is observed in terms of temporal resolution

(sub-milliseconds to seconds), spatial resolution (micrometer

to centimeters), and spatial extent (single electrode to the whole

brain). The combination of complementing experimental ap-

proaches, each one focusing on specific aspects, enables a

more comprehensive understanding of neuronal activity and

supports validating findings independently of the biases of indi-

vidual recording techniques, e.g., spatial vs. temporal resolution,

latency, or artifacts.3 This raises the challenge to integrate multi-

scale, multi-methodology data by defining levels of description

and relationships between data modalities.

Cross-domain comparisons between different data modalities

form the foundation of validation scenarios that align theories

and models with experimental data in the presence of biological

variability and data heterogeneity.4–6 However, performing such

comparisons is not a trivial task and is only rarely addressed.

Even if authors adopt definitions and methods from other publi-

cations, comparing quantitative findings is not necessarily

straightforward. For example, in the studies Massimini et al.7

and Botella-Soler et al.,8 the same methodology and wave

definition are adopted. Still, a direct quantitative relationship be-

tween the reported wave velocities (2:7± 0:2 and 1:0± 0:2 m/s,

respectively) is difficult due to remaining differences in the anal-

ysis implementations, making it impossible to accurately retrace

the source of the discrepancy. In particular, inaccessible and

non-reusable code makes it increasingly ambitious for scientists

to interpret and understand the differences in the quantitative

results.

The main challenge in cross-domain comparisons is to find a

common basis for the analysis. What this constitutes depends

on the involved data types and the scientific questions. More

similar data can have more immediate commonalities, whereas

very different data may only be compared on an abstract level.

Generally, the comparison of two datasets benefits from having

a common description level for the observations, equivalent or at

least comparablemethods for processing and analyzing, and the

use of equivalent implementations and standard algorithms.

Indeed, much care is required to eliminate as many potential

confounds as possible, as it has been shown that even seem-

ingly minor influences can have crucial effects on numerical re-

sults and add sources of systematic errors.9

A prerequisite of comparability is reproducibility. Any analysis

result must first be reliably reproducible with the same data

before it can be reasonably compared with results from other

data. Ideally, the analysis results to be compared are generated

from the same code base. However, integrating heterogeneous

data, bridging otherwise specific and isolated studies, and

contributing to a more collaborative scientific tool base require
2 Cell Reports Methods 4, 100681, January 22, 2024
a considerable degree of generality and reusability of the code.

Fortunately, many aspects of analysis workflows are already

formalized and addressed by open-source software tools and

standards, such as data and metadata representation,10–12

provenance,13 version control,14 standardized algorithms and

frameworks,15–17 and workflow management.18–20

A scenario where a multitude of analysis methods exists,

acting on observations from a variety of different measurement

techniques, spatiotemporal scales, and species, is the study of

spatially organized activity, in particular, wave activity. While

waves are a ubiquitous phenomenon, their functional roles are

not fully understood.21

A particular type of wave-like activity that we set out to inves-

tigate in this study are slowwaves (< 1 Hz).22 They describe prop-

agating activity patterns in the delta band, defined by transitions

between states of low activity (down) and high activity (up). They

are reliably observed in mammals during deep sleep and anes-

thesia (Figure 1) and are frequently investigated in the study of

memory, consciousness, and the cognitive effects of sleep.23–26

For slow waves, findings include that the transitions between up

and down states are coordinated precisely over a wide cortical

range, implying a larger network mechanism.27 The transitions

coordinate with the synchronization of the astrocytic network,28

with thalamic activity,29–31 and across the cortex, as reoccurring

slow-wave patterns can appear over an entire hemisphere.32 Ev-

idence from slice and in vivo recordings further suggests that

wave propagation is guided by excitability, i.e., predominantly re-

sides in layers 4 and 5,33,34 and shows distinctly different oscilla-

tion characteristics across cortical regions.35–37 Although slow-

wave activity is characteristic of sleep and anesthesia, it can

even be observed in localized areas during wakefulness.38 Addi-

tionally, modeling approaches suggest the importance of long-

range connections,39,40 synchronous high-amplitude events,41

and the correct excitation-inhibition ratio42,43 to exhibit propa-

gating slow waves. In face of such a prevalent phenomenon as

slow waves, it is not surprising that the literature reveals a very

heterogeneous mosaic of approaches, methods, metrics, and

terminology. Due to this plurality, the relationships between the

respective findings are rarely apparent and mostly qualitative,

limiting the potential of cumulative discovery by the collection

of studies. Moreover, it is generally unclear which observables

are relevant for the local cortical function or higher cognitive

functions (e.g., memory consolidation). The typically reported

properties are thus often heuristic and include, for example, tran-

sition slopes,35 phase velocity,7,32 wave type classification,44–48

source/sink location and propagation patterns,49,50 excit-

ability,37,51,52 and event frequency.53 Thus, we here focus on

common observables that can be extracted from different mea-

surement modalities (i.e., planarity, interwave intervals, velocity,

and direction). By investigating the relations of these characteris-

tics with parameters such as brain state, anesthetic level, and

spatial/temporal resolution, we can evaluate the capabilities of

measurement techniques, identify biases, constrain theories,

develop and benchmark analysis methods, contribute to defining

standards, and aid the assessment of clinical data, for example,

in the case of coma patients.

In the following, we report two results: first, we address the

technical aspects of developing formalized analysis approaches



Figure 1. Multi-scale, multi-modality, uniphenomenon: The many faces of slow waves
Illustration of examples of slow-wave activity reproduced from the studies cited for each image.

(A) Wide-field voltage-sensitive dye imaging of awake mice.94

(B) Recorded anesthetized GCaMP6f mice with wide-field fluorescence microscopy.72

(C) Distributed network of cortical columns of leaky integrate-and-fire neurons with spike frequency adaptation.40

(D) 1D multi-layer thalamo-cortical model with one- and two-compartment neuron models using Hodgkin-Huxley kinetics.85

(E) 2D balanced conductance-based spiking neural network model.43

(F) Multi-electrode recording in ferret cortical slices.33

(G) Human high-density (HD) EEG during first sleep episode of the night.7

(H) Human ECoG recording during sleep.32

(I) Intracranial depth EEG in sleeping human subjects.71

(J) Intracranial depth EEG in humans during sleep.8

(B, C, E, H, and J) Licensed under the Creative Commons Attribution 4.0 International License (CC-BY). (D, F, and G) Reproduced with permission. (B, C, E, F, H,

and J) Copyright with the respective authors of the cited source publications. (D) Copyright 2002 Society for Neuroscience. (G) Copyright 2004 Society for

Neuroscience.
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on a conceptual and an implementation implementation of the

Cobrawap level, resulting in the Collaborative Brain Wave Anal-

ysis Pipeline (Cobrawap) as a flexible and modular pipeline solu-

tion for analyzing cortical slow-wave activity. Second, we

demonstrate the application of Cobrawap by performing a struc-

tured analysis across multiple heterogeneous datasets dataset

comparisons quantify the variability of slow-wave characteristic

and a comparison of up-state detection methods by interchang-

ing the corresponding method block interchangeable blocks

enable benchmarking of methods. Readers who are more inter-

ested in the applicability of the analysis pipeline are invited to

skip directly to this second part.
RESULTS

A modular analysis approach enables flexibility in
studying slow waves
Since there is no single fully comprehensive measure to charac-

terize spatial activity patterns, we focus on identifying commonly

used analysis metrics of wave activity that enable a comparison

between datasets of different measurement types. In designing

the pipeline, we first align the heterogeneous input data (e.g.,

from electroencephalogram [EEG], implanted electrode arrays,

imaging techniques, or simulations) and find a common represen-

tation. Although the input data may differ in terms of spatial or
Cell Reports Methods 4, 100681, January 22, 2024 3



Figure 2. Pipeline approach

The proposed pipeline design has the role of

aligning methods to create and operate on a

common description of the phenomenon of inter-

est. By integrating data from heterogeneous

sources on the input side and extracting a variety of

common output metrics on the output side, this

pipeline approach forms a basis for rigorous

comparisons. The pipeline is built on existing tools

and standards, e.g., data and metadata repre-

sentation, file formats, standard packages

and implementations, environment handling, and

workflow management. The catalog of applicable

methods is flexibly extendable, making the anal-

ysis pipeline adaptable and reusable.
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temporal resolution, scale, or signal type, we aim to process them

by commonmethods and to converge toward a commondescrip-

tion of wave activity. From this common description, we derive

characterizationmetrics that are agnostic about the data’s origins.

Such a generalized approach may be applied to different types of

propagating fluctuating activity associated with different brain

states, including various expressions of slow waves54,55 (as we

do here), burst suppressions,56,57 or waves in higher fre-

quencies.58,59 This way, we arrive at relatable wave characteriza-

tions and avoid comparing apples to oranges (Figure 2).

The key to making the pipeline adaptable to the different data

processing requirements, analysis approaches, and scientific

questions is to identify the appropriate level of modularity. Thus,

we first segment the analysis procedure into a series of sequential

stages. Each stage is a self-consistent logical step in an analysis

workflow with a well-defined purpose, input, and output. A stage

should be constructed generally enough to be reusable as a

standalone or in other pipelines. Along the pipeline, subsequent

stages become necessarily more specific and tailored toward

the scientific application, while the early stages cope with more

general tasks, such as data integration and preprocessing, that

are likely shared across different pipeline applications.

Each stage is further segmented into blocks. A block defines a

concrete action to be performed on the data, implementing a

method. Similar to stages, blocks have a well-defined input

and output by which they can be chained together. In contrast

to stages, blocks are not necessarily executed in a predefined

sequence. Rather, each stage implements the mechanics of

the block interactions and defines which block combinations

and sequences can be chosen. Some blocks may need to be

mandatory for the realization of the stage purpose and have a

fixed place in the execution order. Others may be optional and

flexibly combined. We identified three basic arrangements to

be employed in the stages: fixed (a fixed execution order of the

blocks), choose any (a custom selection and execution order

of a set of blocks), and choose one (a multiple-choice selection

between blocks for one execution position).
Implementation of Cobrawap
Based on the conceptual framework illustrated above, we

construct the Collaborative Brain Wave Analysis Pipeline (Cobra-

wap) as a specific pipeline application for the analysis and com-

parison of slow-wave activity across 5 publicly available datasets
4 Cell Reports Methods 4, 100681, January 22, 2024
of electrocorticography (ECoG) and wide-field calcium imaging

recordings of anesthetized mice from the EBRAINS Knowledge

Graph platform (https://search.kg.ebrains.eu). Besides the mea-

surement technique, the 60 examined recordings vary in a range

of factors such as experimental setup, the genetic strain of the

mice, anesthetic type, anesthesia level, temporal and spatial res-

olution, and recording duration (see experimental model and sub-

ject details).

The pipeline implementation uses the open-source language

Python to ensure accessibility and reproducibility. Further, we

base the pipeline’s architecture on the Python-based workflow

manager snakemake,18 which employs input-to-output rules

containing executable shell commands (e.g., Python scripts or

bash commands). Snakemake structures the execution of the

rules by building dependency trees from the final result file(s)

back to the initial input, matching the input requirements to the

outputs of preceding rules (see design of the analysis pipeline

and Figure S6).

We organized the Cobrawap into 5 sequential stages, succes-

sively transforming the raw data and extracting slow-wave char-

acterizations, as illustrated in Figure 3. In the following, we

describe the role of each stage in the analysis of the ECoG and

wide-field calcium imaging data. The stages and blocks are

described in detail in the STAR Methods and in the correspond-

ing README files.

d In the first stage, data entry, the data are being prepared

for the later stages by loading, structuring, and annotating

the data and metadata according to the defined scheme

using the Neo data representation.60 For loading data

and converting its often highly specific structure into a

common representation, each data source requires a

custom script that can be adapted from a template script,

making use of Neo for structuring the data and interfacing

to a variety of file formats.

d The second stage, processing, offers a series of blocks im-

plementing basic preprocessing steps that can be arbi-

trarily combined and ordered. The choice of blocks for

the two data types is also indicated in Figure 3. The calcium

imaging data are cut into a region of interest, the back-

ground is subtracted, and the pixel-wise signals are de-

trended, frequency filtered within 0.1–5 Hz (using a sec-

ond-order Butterworth filter with the scipy.signal.sosfiltfilt

filter function), and Z scored. The data from the unfiltered

https://search.kg.ebrains.eu
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Figure 3. Progression of two datasets, ECoG and wide-field calcium imaging, through the Cobrawap

(A) The five successive stages contain collections of modular blocks in three different selection modes (fixed, choose one, choose any). The analysis path is

adaptable for specific datasets and analyses by selecting and configuring the desired blocks (indicated by colored dots for the datasets).

(B) The intermediate results after each stage are visualized for the two datasets as color-coded signals on the electrode/pixel grid covering most of the right

hemisphere of the mouse brain (up: anterior, right: lateral; ECoG: 4:9532:75 mm, calcium imaging: 535 mm). From left to right: raw data, post-processed signal,

detected upward transitions (blackmarkers), groupedwavefronts (redmarkers) with the optical flow (arrows), and quantification of the linear flow alignment within

the waves (i.e., planarity).
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micro-ECoG recordings also have their background sub-

tracted before the electrode-wise signals are detrended,

normalized, transformed into a logarithmically scaled

multi-unit activity (logMUA) signal with reduced sampling

rate (see logMUA estimation (in stage 2)), and Z scored.

d The third stage, trigger detection, provides multiple op-

tions for a trigger detection method, identifying the time

stamps of state transitions (upward or downward trigger)

in each channel as an indicator for the possible passage

of a wavefront (see trigger detection (in stage 3)). In the

following, only upward transitions are considered as trig-

gers. Since the logMUA signal shows sharp state transi-

tions, they are best detected by a threshold determined

from a channel-wise fit of the amplitude distributions.37

Conversely, the transitions in the imaging data are deter-

mined by the slow activation function of the fluorescent in-
dicators. Therefore, they are better detected by identifying

the upward slopes by either the Hilbert-phase signal

crossing a specific value (here, � p=2) or by the local

minima preceding a dominant peak. In the following, we

use the trigger detection via the Hilbert phase; however,

we later show how interchangeable blocks enable bench-

marking of methods.

d In the fourth stage, wave detection, the channel-wise

trigger times are grouped to define the individual waves

(see trigger clustering (in stage 4)). This wave representa-

tion as a collection of local upward transition times is

optionally enriched with additional descriptions such as

the optical flow estimation (in stage 4) and the critical

points of the resulting vector field,61 or an additional clus-

tering of the waves into modes, based on the spatial

arrangement of the trigger delays.
Cell Reports Methods 4, 100681, January 22, 2024 5
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d The fifth stage, wave characterization, applies a series of

quantitative characterizations on the basis of themeasures

and groupings generated by the previous stages. The se-

lection of characteristics can be tailored toward address-

ing specific scientific questions or research objectives.

To have a consistent output format for this stage, there

are two distinct realizations for the fifth stage: one for a

characterization using wave-wise measures, e.g., deter-

mining one velocity value per wave, and another for a char-

acterization using channel-wise measures, e.g., calcu-

lating local velocity values per channel and wave. For

simplicity, these two alternatives are presented as a single

stage in Figure 3A.

To demonstrate the capabilities of the pipeline approach to

generate a meaningful quantification of slow-wave phenomena,

we choose four metrics as the basis for dataset comparisons:

the local (i.e., channel-wise) interwave interval, velocity, and di-

rection measures and the global (i.e., wave-wise) planarity mea-

sure. The interwave interval is defined as the time delay between

the occurrence of two consecutive waves at a recording site. The

channel-wise velocity, v, is calculated from the derivatives of the

delay function of a wave, Tðx; yÞ, which indicates when a wave

has reached the position ðx; yÞ in its propagation33,48,62:

vx;y =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

vxT2+vyT2

s
(Equation 1)

The channel-wise direction of wave propagation can also be

derived from the time-delay function Tðx; yÞ. However, in the

following, we use the optical flow of the phase signal (see optical

flow estimation (in stage 4)). The optical flow is a continuous-vec-

tor-valued signal for each position ðx;yÞ, indicating in which di-

rections the contour lines of equal phase propagate. We define

the channel-wise wave directions of a propagating wave as the

optical flow vector directions at the times and positions of its

trigger events. The planarity, P, of a wave is also defined via

the optical flow as the absolute value of the normalized chan-

nel-wise direction vectors of all trigger events that belong to a

wave, quantifying their alignment on a scale from 0 to 1:

P =
kP vi

!kP kvi!k (Equation 2)

Figures S1 and S2 show videos of the wave activity (stage 4

output) for two example recordings. The pipeline output (of stage

5) is a table of the characteristic measures derived from the de-

tected wave activity. Figure 4 presents some of the output mea-

sures for one of the calcium imaging recordings. An analogous

example figure for an ECoG recording is shown in Figure S3.

The channel-wise and wave-wise direction and velocity, as

well as the wave-wise planarity, are summarized for 4 groups

of similar waves, i.e., ‘‘wave modes.’’ The wave-mode clustering

method (implemented as an optional block in stage 4 of the pipe-

line) applies a k-means clustering on the trigger delaymatrix con-

taining the relative trigger times for each channel in each

wave.33,35,48 The number of modes was set by hand to reason-

ably represent the variability of wave types in the recording.
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Generally, the ‘‘optimal’’ number of modes to set for the k-means

algorithm depends on recording and the analysis application.

For the presented recording, most waves are relatively planar

and travel along the lateral posterior-to-medial anterior axis

(modes #2 and #4). Mode #1 is a variation of mode #4 with a

lower average velocity, and mode #3 contains only one wave.

Although the channel-wise and wave-wise measures for the di-

rection and velocity (Figures 4B and 4D) are defined differently,

they agree considerably well for modes #1, #2, and #4 when

the wave pattern is predominantly planar, while a single wave-

wise value cannot accurately capture more complex wave pat-

terns (i.e., mode #3). Otherwise, the different measures provide

a coherent characterization of each wave mode. In the following,

we only consider the channel-wise measures, with the exception

of the wave-wise planarity measure P, which has no channel-

wise equivalent.

Dataset comparisons quantify the variability of slow-
wave characteristics
Based on the Cobrawap implementation, we are now in a posi-

tion to perform quantitative comparisons of slow-wave dy-

namics across the described ECoG and wide-field calcium im-

aging datasets, contrasting various experimental parameters.

In the following, we demonstrate the application of the pipeline

to investigate the influences of the anesthetic type and dosage,

the application of disease models via genetic knockout, and the

measurement technique itself, in particular its spatial resolution.

As shown by Nı́ Mhuircheartaigh et al.,63 the slow-wave activ-

ity power increases with anesthetic concentration until reaching

saturation. In preliminary analyses, we examined this relation

and ensured that the pipeline methods are robust to reliably pro-

cess activity recordings from different anesthesia levels (Fig-

ure S4). To further check the validity of the pipeline, we qualita-

tively replicate results that were previously published using the

same datasets. While the velocity of waves tends to decrease

slightly in deeper anesthesia states,48 the interwave intervals

become more prolonged, i.e., the frequency of waves de-

creases.48,64 The same trends are visible in the corresponding

pipeline output for the same data (Figure 5A). The velocity and

frequency of slow waves were also measured in the context of

a disease model for Williams-Beuren syndrome (WBS) in

knockout (KO) and wild-type (WT) conditions (of the same ge-

netic strain).65,66 In both the previous publication and the pipeline

output (Figure 5B), we observe no visible effect on the wave

characteristics except for a slight increase in the variance in

the KO condition.

Including another dataset from an experiment67 that models

the Fragile X syndrome (FXS) allows us to extend the analysis

of the WBS data across experiments. Focusing on the WT con-

trol subjects, we compare the influence of experimental param-

eters between the WBS and FXS experiments (Figure 5B).

A notable difference between the two experimental setups is

that the WBS experiment used ketamine as the anesthetic

(100 mg/kg inducing +37 mg/kg maintaining), while the FXS

experiment used isoflurane (4% inducing +1% maintaining).

Comparing the measure distributions for the WT mice shows

considerably larger velocities measured in the experiment that

used isoflurane and a larger range of interwave intervals for the
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Figure 4. Representation of the Cobrawap output for one exemplary wide-field calcium imaging recording

The waves are categorized into one of 4 modes (block wave_mode_clustering), shown in columns.

(A) The average wave pattern of each mode is illustrated as a time-delay heatmap with iso-delay contours. Top: number of waves contributing to the mode.

(B) The aggregated histograms of channel-wise directions during waves of each mode. The black lines indicate the average wave-wise direction measures.

(C)Map of the average channel-wise velocities vx;y in waves of eachmode (color code), overlayed (arrows) with the average channel-wise direction determined via

the optical flow.

(D) The distributions of channel-wise velocities corresponding to (C). Black ticks and error bars: the average and 95% confidence interval (CI) of the corre-

sponding wave-wise velocities.

(E) The average and 95% CI of the planarity, P, for waves of each mode.
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Figure 5. Quantitative comparison of slow waves across heterogeneous datasets

Violinplotsshowsampledistributionswith indicationsof themedian (dashed line) and thequartiles (dotted lines). Lineplotsalsoshowthemedianandquartiles (shaded

areas). Polar plots show the distributions of wave directions in the right hemisphere so that ‘‘up’’ corresponds to an anterior direction and ‘‘right’’ to a lateral direction.

(A) Velocity and interwave intervals of slow waves in ECoG recordings as a function of the anesthesia level.

(B) Velocity and interwave intervals of slow waves in ECoG recordings of experiments modeling Willems-Beuren syndrome (WBS) and Fragile X syndrome (FXS)

split into wild-type (WT; blue) and knockout (KO; green) subjects.

(C) The ECoG data from (B) is compared to calcium imaging data split into anesthetic types, on the basis of wave velocity, interwave interval, wave planarity, and

wave direction.

All distributions in (A)–(C) are scaled to have equal height.

(D) Effect of stepwise spatially downsampling the calcium imaging data from 0.05 (factor 1) to 0.55mm (factor 11; the spatial resolution of the ECoG data) on wave

velocity, interwave interval, wave planarity, number of waves, and wave direction. The line graphs denotes themedian and the shaded area the 0.25–0.75 quantile

of the corresponding distributions. The histograms of wave directions are only shown for the fully downsampled data (with factor 11).
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experiment that used ketamine (Figure 5B). In comparison to Fig-

ure 5A, where anesthesia was induced with ketamine (75 mg/kg)

but maintained with isoflurane (0.1%–1.16%), we see a better

agreement with the velocities in the WBS (ketamine) experiment

than with the FXS (isoflurane) experiment. However, comparing

the exact depth of anesthesia across different anesthetics is

generally difficult. Furthermore, it is to be noted that since this

is a meta-analysis, there is little control for confounding param-

eters between the different datasets, so care must be taken in

the attribution of the differences in wave characteristics to a sin-

gle parameter, here the anesthetic type.
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Next, we broadened the scope of the analysis by contrasting

the ECoG recordings of ketamine- and isoflurane-anesthetized

micewith analogous recordings that use wide-field calcium imag-

ing on anesthetized Thy1-GCaMP6f mice, measuring the cortical

activity via the fluorescent response in excitatory neurons.68,69

Figure 5C illustrates the distributions of wave characteristics

grouped by measurement technique and anesthetic type. A prin-

cipal difference between the measurement techniques is their

spatial resolution. The wide-field calcium imaging data have a

resolution of 0.05 mm compared to 0.55 mm for the ECoG data.

The finer resolution allows for a better distinction of complex
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non-planar wave patterns, as can be seen by the broader distribu-

tion of the planarity that is shifted toward smaller values. Addition-

ally, in calcium imaging data, complex wave patterns with low

planarity are more prevalent under isoflurane-induced anesthesia

than under ketamine-induced anesthesia, an effect that can also

be seen to a smaller extent in the ECoG recordings. Furthermore,

the detectedwaves in the calcium imaging data aremore frequent

and regular, as shown by the interwave-interval distributions. The

wave velocity distributions exhibit a notable discrepancy between

themeasurement techniques for the isoflurane datasets, while the

velocities for the ketamine dataset are quite similar. This consider-

able difference in wave velocities is likely related to a difference in

the isoflurane concentration (1% in ECoG and 1.5%–2% in cal-

cium imaging recordings), as even small differences in the con-

centration can have a considerable effect on the wave dynamics

(cf. Figures 5A and 5B).

The slow waves we detect with the Cobrawap tend to propa-

gate along a preferred axis and primarily in one direction. This

axis seems to be approximately consistent within the data of

each measurement technique but not across (Figure 5C, right).

In the ECoG data, the preferred propagation axis spans from pos-

terior medial to anterior lateral, with the preferred directions being

different for the isoflurane and ketamine datasets. In thewide-field

calcium imaging data, the preferred wave direction is from poste-

rior lateral to anterior medial. Wave propagation that is oriented in

a back-to-front or front-to-back manner is also reported in previ-

ous studies.7,31,35,48,62,70,71 The spread of the wave direction his-

togram around the preferred directions can be either caused by a

variance of channel-wise directions between waves or within

waves, e.g., waves with low planarity have, per definition, a

broader spread of channel-wise directions.

To further explain the observed differences in thewave charac-

teristics between the ECoG and calcium imaging data, we inves-

tigate the influence of their different spatial resolutionsby spatially

downsampling the calcium imaging data up to a factor of 11, for

which the spatial resolution is equal to the one of ECoG

(0.55mm). Figure 5Dshowshow thedistributionsofwavecharac-

teristics change as a function of the downsampling factor. With a

decreasing spatial resolution, fewerwaves aredetected, and they

appearmoreplanar, assomecomplex local patternsareno longer

detected. This effect is particularly visible for the isoflurane data-

sets. A similar effect on the probability of detecting a planar wave

as a function of region of interest size has been previously shown

by Liang et al.50 The histograms of directions of the fully down-

sampled calcium imaging data are more narrow than for the full

resolution (Figure 5C), indicating that the propagation directions

are consistent across waves, and the variances in direction

observed in Figure 5C are caused mainly by non-planar waves.

Lastly, we observe that with downsampling, the waves in the iso-

flurane datasets exhibit faster channel-wise velocities that sur-

pass the ketaminewave velocities, comparable to theECoGdata.

In summary, we demonstrate how the adaptable pipeline

approach of Cobrawap enables the comparison of slow-wave

characteristics across heterogeneous datasets, including elec-

trical and optical acquisition methods. This meta-analysis

illustrates distinct differences within the aggregated data and

potential dependencies on the experimental parameters to be

investigated further.
Interchangeable blocks enable benchmarking of
methods
While applying the sameanalysismethod to different data enables

rigorous comparisons, applying alternative methods to the same

data allows investigating the influence of the choice of themethod

itself. In the analysis of slow waves, the method for detecting the

transitions from down to up states plays a central role that we will

consider as an example in the following. So far, we detected the

trigger times in the calcium imaging data at the upstroke of the

transitions, with the Hilbert phase of the signal crossing a

threshold value of� p
2 (see trigger detection (in stage 3)). However,

alternative methods to define trigger times were suggested, such

as using the localminima of the filtered signal.72 Figure 6 illustrates

the influence of the two different detection methods on the result-

ing wave characteristics. In Cobrawap, realizing this method

benchmarking workflow only requires selecting the correspond-

ing wave detection block and rerunning the analysis on the cal-

cium imaging data. The detected triggers differ clearly in number

and exact timing (Figure 6A), resulting in a different set of detected

waves (see an example in Figure 6B). Figure 6C shows that the to-

tal number of waves is larger with theminimamethod ensuing that

the corresponding interwave intervals also tend to be shorter than

for the Hilbert-phase method (effect sizes: 0.43 for ketamine and

0.58 for isoflurane). The velocities remain similar for the ketamine

datasets (effect size: 0.04) but differ slightly for the isoflurane data-

sets (effect size: 0.32), while the planarity distributions are mostly

unaffected by the choice of trigger detection method (effect sizes:

0.03 for ketamine and 0.02 for isoflurane). A Kolmogorov-Smirnov

test indicates significant (p< 0:01) differences for the velocity and

interwave interval but not for the planarity.

The ability to easily compare methods allows us to evaluate

the strengths of each approach and check for potential biases

introduced to the wave characterization. The Hilbert-phase

method employs a non-parametric approach (using only an arbi-

trary phase threshold value), detecting two succeeding local

peaks as separate triggers only when the corresponding phase

of the signal completed a full rotation between them. Therefore,

the method is more conservative and may disregard some over-

lapping slow-wave activity peaks as ‘‘noise’’ fluctuations (cf.

third to last trigger in the top panel of Figure 6A).While this results

in fewer waves, they are, however, better separated and more

coherent across channels, whereas the minima detection

method uses multiple parameters to fine-tune the algorithm to

the researcher’s expectation of which minima should constitute

a slow-wave trigger in the respective dataset. While such

method calibration offers flexibility, it can be very intricate, espe-

cially when handling multiple large datasets where a common

parameter selection for comparability is an additional concern.

Here, this results in a less strict selection of slow-wave triggers.

For a more extensive method comparison, including specific

edge cases, this approach could be further combined with simu-

lated data.

DISCUSSION

Advantages of a reusable modular pipeline design
The presented multi-modal analyses of slow-wave activity us-

ing the Cobrawap implementation illustrate the benefits of a
Cell Reports Methods 4, 100681, January 22, 2024 9
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Figure 6. Comparison of trigger detection methods in calcium imaging data

(A) Upward transitions (triggers, black vertical lines) found by two different detection algorithms, detecting the crossing of the Hilbert phase at �p= 2 (top) and

local minima (bottom). Signal taken from the black pixel indicated in (B).

(B) The same exemplary wave (corresponding to the last trigger in A) illustrated over the recorded area as detected using the two trigger detection algorithms. The

arrows indicate the local direction of the wavefront at the time of the trigger, which is also encoded as the color of the arrows.

(C) The distributions of the wave velocity, interwave interval, wave planarity, and number of the waves obtained by the two methods in the calcium imaging

datasets (compare to Figure 5C). All distributions in (C) are scaled to have equal height.
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modular pipeline approach that incorporates general aspects

of reproducibility and reusability. The pipeline output retains in-

formation about the applied analysis scripts, their execution or-

der, and parameter settings. The intermediate stage and block

results and their visualizations further help to retrace the work-

flow and build confidence in the findings. Aligning the work-

flows for different datasets by applying the same or analogous

analysis methods while catering to their specific processing de-

mands makes the corresponding results comparable. This

setup promotes cross-domain comparisons, including the

quantitative evaluation of experimental parameters (e.g., mea-

surement techniques, anesthetics, species) and validation of

simulated activity data. The modular nature of the pipeline

design can cater to heterogeneous data inputs. Additionally, in-

terchanging methods in the analysis of the same dataset also

allows the evaluation of a method’s influence on the down-

stream results. The explicit extensibility of the pipeline and

reusability of the individual components aim to facilitate further

research applications by providing a framework for designing

efficient and reproducible workflows. Still, care has to be taken

to adequately match the requirements of data and methods.

For example, the ‘‘threshold’’ and Hilbert-phase trigger

detection methods assume a channel-wise quasi-stationarity

of the down- and up-state levels after the processing stage
10 Cell Reports Methods 4, 100681, January 22, 2024
(including, e.g., detrending). Non-stationary recordings (e.g.,

due to changing anesthetic concentration or wave frequency

regime) should therefore be cut into quasi-stationary segments

or analyzed with correspondingly adaptive methods (like the

minima trigger detection).

Structured analysis pipelines contribute to progressing
the study of slow waves
All measurement techniques have a bias in terms of which

aspect is recorded from a neural population. This results in

different compositions of subsampled neural activity. In the pre-

sented meta-analysis, we compare the neural activity character-

istics represented in ECoG and wide-field calcium imaging re-

cordings (Figure 5). These measurement techniques produce

fundamentally different perspectives of the underlying activity.

On the one hand, ECoG records the spiking activity of neurons

in the superficial layer that have a high firing rate and a high

signal-to-noise ratio with high temporal but low spatial resolu-

tion. On the other hand, wide-field imaging of GCaMP6f in

Thy1-GCaMP6f mice measures population spiking activity

from excitatory neurons in layers 2/3 and 5 as a delayed, low-

pass-filtered, non-linearly transformed fluorescence signal with

low temporal but high spatial resolution.73–75 These two mea-

surement perspectives are complementary, as prior work shows
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that even elaborate models cannot capture their complex rela-

tionship, and there is generally no precise agreement between

the observations.76–78 Therefore, depending on the focus of

the wave activity analysis, both techniques offer advantages.

ECoG is better suited to explore the fine temporal dynamics

(e.g., the exact shape of up transitions), while calcium imaging

can better resolve the intricate spatial dynamics (e.g., complex

local propagation patterns). Combining measurements of

different spatial resolutions and scope allows us to study the

interaction of wave dynamics across scales. For example, the

combination of different measurements that sample from

different cortical layers can support more detailed investigations

of layer-specific contributions to the wave activity. This is of

particular interest since aspects like frequency power, signal

flow, and propagation speed are known to vary considerably

with cortical depth.33,79–81 Furthermore, since researchers or cli-

nicians might be constrained to a particular measurement setup,

in order to provide context, it becomes crucial to understand the

extent to which their observations can be related with observa-

tions obtained with other measurement techniques or subjects

or on different scales. Establishing such links requires integrative

analysis approaches, such as the one we propose with Cobra-

wap, that can combine data from heterogeneous sources.

Besides the biases of the measurement technique and its reso-

lution, we further present the influences of the anesthetic type and

dosage on the wave characteristics, showing in particular that ke-

tamine tends toproducemoreplanarwaves than isoflurane, in turn

also influencing themeasureddirections and velocities. This effect

is likely linked to the known attributes of the anesthetics: that keta-

mine is more effective in generating slow-wave activity as it in-

creases the power of the local field potential (LFP) in the delta fre-

quency band, while isoflurane rather enhances LFP activity in the

theta band and above.82,83

The need to quantitatively relate results from the literature to

each other becomes quite apparent when investigating the sour-

ces of variance of the velocity of slow waves, which can vary from

a few mm/s in recordings of anesthetized rodents up to � 10 m/s

in human sleep experiments.7,32,35 Studied influences to this vari-

ability include the extent of axonal projections,7,39,84 axonal con-

ductances,35 involved cell types,85 and neuronal excitability de-

pending on anesthetics,48 neuromodulators,86 or cortico-cortical

or cortico-thalamic loops.70,87 Furthermore, the velocity of a

wave may depend on its direction, which in turn is influenced by

an interplay of local and global connectivity properties and fre-

quency effects.7,87,88 Comparison between data from different

studies can help relate and discern such influences.

Integration in model development and data-driven
simulations
While the exploration of wave characteristics under different con-

ditions can provide further insight into the understandingof the un-

derlying processes, availability of experimental data can also suf-

fer from constraints in the data size, parameter regime, and

uncontrolled confounds. Therefore, in many scenarios, it is bene-

ficial to include modeling data in the analysis. Cobrawap can be

directly applied to simulation outcomes to extract the same char-

acteristics as from the experimental data and to perform a quan-

titative comparison in a subsequent validation step. Such a step
can already be integrated into the model development in the

form of an explicit calibration. This strategy is considered by Ca-

pone et al.,89 where, after a preliminary estimation of model pa-

rameters through likelihood maximization,90 a subset of parame-

ters is further adjusted by performing a grid exploration relying

on the direct comparison between data and simulations based

on Cobrawap. The comparisons in Capone et al.89 are derived

from the selection of observables described here, considering

the waves’ local velocities, directions, and frequencies. This cali-

bration approach allowed for a meta-inference procedure, finding

the optimal parameters of a neuromodulation current to repro-

duce the dynamics observed in experimental data. Such an

approach is essential to complement the theoretical understand-

ing of the relationship between the spatiotemporal features of

cortical waves and the cortical structure.91

Reusability: Related pipelines and outlook
We developed the Cobrawap to be reusable. Its modular struc-

ture of stages and blocks allows for reuse in different scenarios.

The pipeline may be applied to other types of input data,

extended by other method blocks, or changed to produce addi-

tional kinds of output. The pipeline can be adapted in this regard

by editing the stage’s config files and changing the block selec-

tion and parameter settings. The minimum requirement for any

input data is that they are recorded on a grid electrode/pixel

layout. Cobrawap can be extended formore substantial changes

by adding new blocks that implement specific analysis methods.

Further, disparate applications may swap out the later stages of

the pipeline entirely, i.e., realizing a branching-off pipeline

(similar to the separate stage 5 realizations for channel-wise

and wave-wise observables). The individual blocks and stages

can also be used selectively as standalone elements without

the pipeline in different workflow applications.

For example, current work entails a more detailed analysis of

the local oscillations ignoring the spatial propagation, similar to

work done in De Bonis et al.37 This application reuses the first

three stages of Cobrawap and then branches off with specialized

stages. There are also wave-like phenomena in other frequency

regimes. For example, in alpha, beta, and gamma frequency

ranges, diverse wave patterns have been observed in awake,

behaving animals.45,58,61,92,93 A flexible pipeline approach

following Cobrawap may disentangle some of the reported re-

sults, methods, and terminologies.

Conclusion
In this article, we demonstrate the advantages of formalizing and

harmonizing analysis approaches. By taking a data-science

perspective, we work toward integrating heterogeneous insights

from different data and analysis types. In our view, understand-

ing an organ as complex as the brain requires the integration of

data obtained on multiple levels of observation. Furthermore, we

experienced how structuring our methodology and implementa-

tion also contributed greatly to our structure of thought. We are

confident that the concepts presented in the framework of the

Cobrawap implementation contribute to advocating for the

concept of reusability for analysis resources, in particular with re-

gard to the uptake of and contribution to community software

projects.
Cell Reports Methods 4, 100681, January 22, 2024 11
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Limitations of the study
The Cobrawap framework is designed to be adaptable and

extendable to fit a diverse range of data sources. Nevertheless,

its applicability requires certain minimal prerequisites to be met.

Currently, the pipeline ingests activity data recorded with a

spatial 2D arrangement of simultaneous recording sites, such

as electrodes or pixels. Usersmust exercise care and knowledge

in selecting appropriate method blocks for their datasets and

should consider data-specific processing requirements, ac-

counting for factors such as non-stationarity. The pipeline imple-

mentation allows users to add specific blocks or stages when

necessary for particular applications. While Cobrawap aims at

accelerating the analysis of various data types and providing a

common basis for their comparison, different experimental

data sources may inherently contain uncontrolled confounding

factors. These need to be taken into account when interpreting

the results obtained with Cobrawap. The characterization of

modeled wave activity offered by the pipeline can equally serve

as a foundation for calibration and validation processes during

model development and refinement. There are further ongoing

developments to address the described limitations.
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P.L., Rodgers, C.C., Sobolev, A., Wachtler, T., Yger, P., and Davison,

A.P. (2014). Neo: An Object Model for Handling Electrophysiology Data

in Multiple Formats. Front. Neuroinf. 8, 10.

61. Townsend, R.G., and Gong, P. (2018). Detection and Analysis of Spatio-

temporal Patterns in Brain Activity. PLoS Comput. Biol. 14, e1006643.

62. Greenberg, A., Abadchi, J.K., Dickson, C.T., and Mohajerani, M.H.

(2018). New Waves: Rhythmic Electrical Field Stimulation Systematically

Alters Spontaneous Slow Dynamics across Mouse Neocortex. Neuro-

image 174, 328–339.

63. Nı́ Mhuircheartaigh, R., Warnaby, C., Rogers, R., Jbabdi, S., and Tracey,

I. (2013). Slow-Wave Activity Saturation and Thalamocortical Isolation

During Propofol Anesthesia in Humans. Sci. Transl. Med. 5, 148.

64. Dasilva, M., Camassa, A., Navarro-Guzman, A., Pazienti, A., Perez- Men-
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Mouse ECoG (Propagation modes) EBRAINS KnowledgeGraph https://doi.org/10.25493/WKA8-Q4T

Wide-field calcium imaging (ketamine) EBRAINS KnowledgeGraph https://doi.org/10.25493/QFZK-FXS

Wide-field calcium imaging (isoflurane) EBRAINS KnowledgeGraph https://doi.org/10.25493/XJR8-QCA

Experimental models: Organisms/strains

Mus Musculus: C57BL/6J IDIBAPS RRID:IMSR_JAX:000664

Mus Musculus: Del(5Gtf2i-Fkbp6)1Vcam/

Vcam (WBS-KO)

IDIBAPS N/A

Mus Musculus: ATJ/FVB.129P2-FMR1-mix

(FXS-KO)

IDIBAPS N/A

Mus Musculus: C57BL/6J-Tg(Thy1-

GCaMP6f)GP5.17Dkim/J

LENS RRID:IMSR_JAX:000664

Software and algorithms

Analysis and plotting scripts This paper https://doi.org/10.5281/zenodo.10210141

Collaborative Brain Wave Analysis

Pipeline (Cobrawap)

This paper https://doi.org/10.5281/zenodo.10198748

RRID:SCR_022966

Snakemake Mölder et al. 18 RRID:SCR_003475

Neo Garcia et al. 60 RRID:SCR_000634

Nix Stoewer et al. 97 RRID:SCR_016196

Elephant Denker et al. 16 RRID:SCR_003833

Scipy Virtanen et al. 15 RRID:SCR_008058

Pandas McKinney 96 RRID:SCR_018214
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to andwill be fulfilled by the lead contact, Robin Gutzen (r.gutzen@

fz-juelich.de, OrcID: 0000-0001-7373-5962).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d This paper analyzes existing data that is publicly available via the EBRAINS Knowledge Graph. The DOIs are listed in the key

resources table.

d All original code has been deposited at Zenodo and is publicly available as of the date of publication. The DOIs are listed in the

key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

An overview of all the individual recordings is presented in Figure S5.

Mouse ECoG recordings
The three experimental ECoG datasets have been provided by IDIBAPS (Institut d’Investigacions Biomèdiques Agustı́ Pi i Sunyer):

Williams Beuren Syndrome (WBS) 3–4months old adult male mice (Wild-Type and Knock-Out), Fragile X Syndrome (FXS) (Wild-Type
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and Knock-Out) mice and Propagation Modes of Cortical Slow Waves across anesthesia levels in adult male C57BL/6J mice

(PMSW). All animals were bred in-house at the University of Barcelona and kept under a 12 h light/dark cycle with food and water

ad libitum. All procedures were approved by the Ethics Committee at the Hospital Clı́nic of Barcelona and were carried out to the

standards laid down in Spanish regulatory laws (BOE-A-2013-6271) and European Communities Directive (2010/63/EU).

For WBS subjects, an intraperitoneal injection of ketamine (100 mg/kg) andmedetomidine (1.3 mg/kg) was administered to induce

anesthesia. It was maintained by a constant administration of subcutaneous ketamine (37 mg/kg/h). For FXS subjects, anesthesia

was induced by the inhalation of 4% isofluorane in 100% oxygen for induction and 1% for maintenance. Finally, for PMSW subjects,

an intraperitoneal injection of ketamine (75 mg/kg) and medetomidine (1.3 mg/kg) and maintained by the inhalation of different con-

centrations of isoflurane in pure oxygen. In PMSW, three levels of anesthesia were reached that were classified according to the pro-

vided isoflurane concentrations: deep = 1:16± 0:08% (s.e.m); medium = 0:34± 0:06%; light = 0:1± 0:0%. The volume delivered was

0.8 L/min.

In order to avoid respiratory secretions and edema, atropine (0.3 mg/kg), methylprednisolone (30 mg/kg), and mannitol (0.5 g/kg)

were administered subcutaneously to all subjects. So as to aid breathing and once in the surgical plane of anesthesia, a tracheotomy

was performed. The animal was then placed on a stereotaxic frame (SR-6M, Narishige, Japan) with constant body temperaturemoni-

toring maintained at 37+ C by means of a thermal blanket (RWD Life Science, China). A wide craniotomy and durotomy were per-

formed over the left or right (only left in FXS) hemisphere from �3.0 mm to +3.0 mm relative to the bregma and +3.0 mm relative

to the midline. A 32-channel multielectrode array (550m m spacing, 50m m electrode diameter) covering a large part of the hemi-

sphere’s surface was used to record the extracellular micro-electrocorticogram (micro-ECoG) activity. For WBS and FXS datasets,

recordings were acquired from spontaneous activity in the animal under anesthesia. Regarding the PMSW dataset, each anesthesia

level was maintained for 20–30 min, and spontaneous recordings were consistently obtained in a stable slow oscillatory regime

(approximately 10 min after the change in concentration). During the recording protocol, a precise visual inspection of all channels

was made in order to ensure that all of them were properly acquiring the signal.

The signals were amplified (Multichannel Systems, GmbH), digitized at 5 kHz, and fed into a computer via a digitizer interface (CED

1401 and Spike2 software, Cambridge Electronic Design, UK).

Mouse wide-field calcium imaging recordings
Experimental data acquired from mice have been provided by LENS, European Laboratory for Non-Linear Spectroscopy (http://

www.lens.unifi.it), and by the Department of Physics and Astronomy of the University of Florence. All procedures involving mice

were performed in accordance with the rules of the Italian Minister of Health (Protocol Number 183/2016-PR). Mice were housed

in clear plastic enriched cages under a 12 h light/dark cycle and were given ad libitum access to water and food.

Mouse Model: The transgenic mouse line used is the C57BL/6J-Tg(Thy1GCaMP6f)GP5.17Dkim/J, referred to as GCaMP6f mice,

from Jackson Laboratories (Bar Harbor, Maine USA) (for more details, see The Jackson Laboratory, Thy1-GCaMP6f, https://www.

jax.org/strain/025393). In this mouse model, the ultra-sensitive calcium indicator (GCaMP6f) is selectively expressed in excitatory

neurons.76,95

Surgery and wide-field imaging: Surgery procedures and imaging protocols were performed as described in.72 Briefly, 6 months

old male mice are anesthetized with either a mix of ketamine and Xylazine in doses of 100 mg/kg and 10 mg/kg respectively or iso-

flurane (3 � 4% induction and 1:5 � 2% maintaining). To obtain optical access to neuronal activity over the right hemisphere, the

local anesthetic lidocaine (20 mg/mL) was applied and the skin and the periosteum over the skull were removed. Wide-field imaging

was performed right after the surgical procedure. GCaMP6f fluorescence imaging was performed with a 505 nm LED light (M505L3

Thorlabs, New Jersey, United States) deflected by a dichroic filter (DC FF 495-DI02 Semrock, Rochester, New York, USA) on the

objective (2.5x EC Plan Neofluar, NA 0.085, Carl Zeiss Microscopy, Oberkochen, Germany). The fluorescence signal was selected

by a band-pass filter (525/50 Semrock, Rochester, New York, USA) and collected on the sensor of a high-speed complementary

metal-oxide semiconductor (CMOS) camera (Orca Flash 4.0 Hamamatsu Photonics, NJ, USA).

METHOD DETAILS

Design of the analysis pipeline
Code development

The implementation of the ‘‘Collaborative Brain Wave Analysis pipeline’’ (Cobrawap) infrastructure is being developed on GitHub

(https://github.com/NeuralEnsemble/cobrawap) and the corresponding documentation is found on readthedocs (https://

cobrawap.readthedocs.io) The pipeline configuration for the presented pipeline application and additional analysis and plotting

code is stored in a separate repository (https://gin.g-node.org/INM-6/cobrawap_publication_code).

Terminology

We organize the analysis pipeline hierarchically into three layers. The top layer constitutes the pipeline itself or a task-specific real-

ization of a pipeline, which we here call workflow. A pipeline we define as a sequence of processing/analysis stages to be executed

following a given order (‘‘from left to right’’). As a stagewe describe a self-consistent logical episode within the analysis process, such

that the output of a stage can be considered a reasonable intermediate result. Furthermore, a stage should be general enough to be

reusable in multiple workflows or pipelines. Each stage is segmented into blocks, which can be selected and rearranged depending
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on the configurations of the user and the mechanics of the stage. A block is the smallest unit of the analysis pipeline and performs a

specific action on the data. Blocks implement methods. In the case of alternative methods or alternative algorithms implementing a

method, they can be either represented as options of a single block or separate blocks.

Implementation with snakemake

We designed the structure of the pipelines having in mind the features of the Snakemake workflow management framework.18 The

rules are defined in script files called Snakefile which also link to a config file. Thus, our pipeline structure is conveniently mappable

onto the snakemake elements: blocks are represented by rules and stages by Snakefiles. In addition, we use another pipeline Snake-

file to combine the stages as snakemake subworkflows and make the pipeline executable as a whole. Figure S6 illustrates the blocks

in each Snakefile and their execution orders for the two example datasets.Within the stage Snakefiles, each block is represented by a

snakemake rule which in most cases executes a Python script. Furthermore, we expand the standard functionality of snakemake by

three mechanics required by our pipeline design: 1) chaining the stages by linking the outputs and inputs of subworkflows, 2) manu-

ally selecting a specific block (i.e., method) or a sequence of blocks by choosing the desired methods in a config file, and 3) selecting

and switching between sets of configs files (’’profiles’’) for all stages.

Modularity

One of themain design principles in constructing the analysis pipeline is modularity. This has the purpose of making the pipeline flex-

ible and thus adaptable to different demands, by making it possible to rearrange and switch elements of the pipeline. In contrast to

other typical analysis workflows, here, the construction of a specific workflow does not require the changing of any scripts but is

rather like tracing a path along the selected stages and blocks within a larger framework offered by the pipeline. Practically, for

the stages, this means that different combinations or variations of stages can be chained together. For the selection blocks, there

are two flavors of modularity used in the stages: choose one, selecting one method block from multiple options; and choose any,

selecting any number of method blocks in any order (see Figure 3). Another aspect of modularity is that each element should be us-

able on its own as well as in combination with other elements. Therefore, much care needs to be put into managing the respective

interfaces where the elements interact.

Pipeline stages

For the analysis of slow wave activity, we chose five stages (Figure 3) starting from more generic stages (Data Entry, Processing) to

task-specific stages (Trigger Detection, Wave Detection, Wave Characterization) which build up the Collaborative Brain Wave Anal-

ysis Pipeline (Cobrawap).

1 Data Entry: This first stage loads a dataset and the required and optional metadata and converts the data into a standardized

representation scheme (using the Neo data format). This loading script is the only custom code that is required to add a new

data source to the pipeline, integrating information from a data file and a corresponding config file. It is checked whether the

resulting data object conforms with the requirements of the pipeline and an overview of a data sample is plotted.

2 Processing: In the second stage, the data is prepared for analysis. The user can select any combination of processing blocks to

fit the data type and their analysis objectives. Where available, the blocks use standard function implementations by the

Elephant Electrophysiology Analysis Toolkit,16 the stack of scientific Python packages (i.e., scipy, scikit, etc.), or algorithms

from the literature.

3 Trigger Detection: Based on the processed data, this stage detects the transition times from Down to Up states (upward tran-

sitions, i.e., trigger) and, if possible, Up to Down states (downward transitions) by applying one of the available trigger detection

blocks. What this trigger exactly relates to depends on the dataset, the processing, and the detection method. Additionally,

there are optional filter blocks that can be applied to clean the collection of detected triggers. The trigger collection is added

as a neo.Event named ’transitions’ to the input Neo object containing the processed data. This stage is general enough to also

be of use for the analysis of other wave-like activity, beyond slow waves.

4 Wave Detection: Latest at this stage, the wave description converges to a common level. The selected detection method op-

erates on the trigger times, grouping them into individual wavefronts while being completely agnostic about the type and origin

of the original data. The resulting groups of triggers, i.e., waves, are added as another neo.Event named ’wavefronts’. Option-

ally, any number of additional wave descriptions can be calculated and added to the Neo object, including the optical flow vec-

tor field or a wave-mode clustering.

5a Wave-wise Characterization: The final stage calculates one ormultiple characteristicmeasure(s) of the detectedwaves. This

contains scalar measures as, for example, the wave velocity or its duration, but may also contain metadata information like

analysis parameters or information about the dataset added in stage 1 (selected via the ’annotations’ block). The output is

a pandas dataframe96 where each row represents one wave and each column an attribute/characteristic. This pipeline output

for one dataset can be directly merged or compared with the output for other datasets and serves as the basis for various

cross-domain comparisons (e.g., data comparisons, model validation, method benchmarking).

5b Channel-wise Characterization: This alternative final stage is equivalent to the ’Wave-wise Characterization’ in its function-

ality, but its characteristic measures are calculated per wave and channel (i.e., electrode or pixel). Therefore, in the output

dataframe, one row represents one channel for one wave. For either of the two options for the final stage, the characterization

can also optionally be performed only on the wave modes instead of on each wave.
e3 Cell Reports Methods 4, 100681, January 22, 2024
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Data and metadata representation

When designing a pipeline with the objective of modularity and generality, it is of crucial importance to properly define the interfaces

between the individual analysis elements (blocks, stages) as well as to the user and other tools. This entails the representation of the

data and metadata in a standardized format. For this, we chose the data format Neo.60 Neo supports a variety of data types and

reading and writing of various common file formats. This interoperability is, thus, ideal for aiding the flexible use of the pipeline. Since

Neo itself is very versatile, there aremultiple ways how to organize the data andmetadata in the Neo structure, so we need to be even

more precise in standardizing the data structure. That means that within the pipeline we store the data of all channels in one neo.

AnalogSignal object and the metadata in the corresponding annotations and array annotations for channel-wise metadata (like their

x and y coordinates). Processing and transformation blocks overwrite the data in this Analogsignal object and add corresponding

metadata. In stages 3 and 4, additional neo.Event objects may be added to represent transition times and wavefronts as well as

an additional AnalogSignal object for derived vector fields (e.g., the optical flow). The file format to use for storing the intermediate

results of blocks and stages can be format supported by Neo.We recommend Nix97 for a robust file format, or the pickle or numpy for

a less robust format that is, however, faster to read and write and produces smaller files.

The entire first stage is dedicated tobeing the interface between the pipeline and the data resource. It checkswhether the data has the

required capabilities and then organizes data andmetadata into the Neo structure. For the analysis of slowwaves with this pipeline, the

data needs to be obtained from electrodes or pixels that are arranged on a rectangular grid (which may include empty sites), and that

exhibit propagating Up states. The corresponding minimal set of metadata required for the pipeline to process the data are i) the sam-

pling rate, ii) the distance between the electrodes/pixels, iii) and their relative spatial locations of the grid as integer x and y coordinates.

Although not explicitly used, it is strongly recommended to includemore information such as themeasured cortical location, the spatial

scale of the grid, the units of the signal, the type and dosageof the anesthetic, an identifier of the dataset, etc. This additionalmetadata is

propagated through the pipeline alongside the data in order to reasonably use and interpret the results.

Pipeline interfaces

This degree of flexibility in the execution order of both stages and blocks is based on standardizing the input and output formats. By

defining the input requirements for each stage and block, they can successfully interact while remaining interchangeable and thus

reusable for other pipelines or applications. Since the individual stages are designed to be potentially reused in other pipelines, the

stage outputs, i.e., the intermediate results, should suffice to the same level of completeness and documentation as a final result.

Thus, also each stage needs to come with a detailed definition of its input and output structure which is checked by a dedicated

’check_input’ block. These definitions are collected in the stage’s README file to guide developers of alternative pipelines as

well as contributors of new blocks for the stage. Similarly, the individual blocks are also thought to serve the modular design by being

easy to reuse and recombine, or even used as a standalone application. Therefore, they also need to clearly state the type and format

of their in- and outputs. Other than for the stages, this is largely handled organically in form of the dependencies of the corresponding

snakemake rule and the definition of the script’s command line arguments and complemented by its docstring.

Logging and intermediate results

The modular organization of the pipeline facilitates maintainability, and additional built-in means, such as provenance tracking and

storing intermediate results alongside their config files, further support reproducibility, and transparency. Moreover, we emphasize

the integration of automatically generated plots of intermediate results. Most blocks produce a plot illustrating their function to make

the evolution of the results (or potential bugs) visible. Additional to the config settings, plots, and snakemake logs, we are currently

working to further enable the provenance of the analysis results by integrating a formalized provenance tracking with fairgraph

(https://gin.g-node.org/INM-6/cobrawap_publication_codehttps://pypi.org/project/fairgraph/).

Pipeline configuration

The flip side of flexibility and adaptability is complexity and ambiguity. Themany combinatorial possibilities need to be controlled by

a user interface separate from the actual analysis scripts, e.g., what stages and blocks should be executed, in which order, and with

which parameters. Config files (e.g., in csv, yaml, json format) offer human-readable access and control to a user to adapt and

execute different variations of the pipeline. Thus, we assign one config file to each stage. Consequently, blocks need to be imple-

mented having generality in mind with any specification handled by corresponding parameters settings, given as command line

arguments, i.e., within the pipeline via the config file. Even though this approach is initially more time-consuming, it does pay off

in both the quality of the method implementation and its (re-)usability. Furthermore, the availability and aggregation of parameters

allow for easier and more transparent calibration of the pipeline across blocks and stages. Additionally, there is a top-level config

file for the entire pipeline that specifies the stages and their order and can define global parameters that may also overwrite stage

parameters, e.g., for setting the file format or plotting parameters for all stages. Parameters in the config files are typically calibrated

for a specific data type or experiment setup. To conveniently switch between calibration presets, the pipeline supports a hierarchi-

cal organization of config presets via profiles. By executing the pipeline with PROFILE = data1, for each stage the corresponding

config file config_data1.yaml is used. For more versatility, profile names can use underscores to define subcategories and excep-

tions, e.g., data1_subject3. In this case, each stage first looks if a corresponding config file of the same name exists, and if not re-

moves the subcategory with the last underscore from the name, and repeats this lookup until it finds the named config file or de-

faults to config.yaml. Furthermore, profiles can have variations indicated in the name with a ’|’, e.g., data1_subject3|methodA. This

variation key is not removed when first looking up existing config files in the naming hierarchy, only when config|methodA.yaml

doesn’t exit it is removed and the lookup loop is repeated.
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LogMUA estimation (in stage 2)

The multi-unit activity (MUA) is an estimate of the local population firing rate, based on the relative spectral power in the high-fre-

quency regime (200–1500 Hz) that can be derived from micro-ECoG recordings.37,64,65,98–100 It is to be noted that not all types of

ECoG can detect a MUA signal, depending on the electrode size and impedance, but instead may record an iEEG signal which is

not equivalent to MUA. The algorithm for the logMUA estimation first selects a moving window that samples the recording at a given

rate. From these samples, the power spectral density (PSD) is calculated using the Welch algorithm. The MUA is defined as the

average power in the defined frequency band divided by the average power of the full spectrum. Using the logarithm of theMUA helps

to emphasize further the bimodality of the distribution in the presence of slow oscillations. In the selection of the parameters for the

algorithm, it is crucial to choose a moving window size large enough so that the chosen frequencies can be accurately estimated

(window sizeR 1
highpass frequency) and a corresponding MUA rate so that the full recording is sampled (MUA rateR 1

window size). Here,

we use a window size = 0:3s and a MUA rate = 100Hz. The parameters for the Welch algorithm calculating the PSDs are: samples

per segment (nperseg) = sampling rate
highpass frequency, with overlapping samples (noverlap) = 0:5$nperseg (rounded down), using a ’Hann’ win-

dow, and a linear detrending.

Trigger detection (in stage 3)

The pipeline implementation provides multiple options to detect trigger events, i.e., transitions from a low activity state to a high ac-

tivity state (Up).

d threshold: The trigger events can either be defined by setting a threshold value for all the signals or by fitting a bimodal function

to the amplitude distribution for each channel in order to set the threshold value. In the latter case, the fitting function is the sum

of two Gaussians and the threshold value is set to the central minima. This option is applied to the ECoG datasets in this paper.

As an alternative to a double Gaussian fit, there is also the option to only fit the first peak corresponding to the low activity state

by only looking at the data left of the peak and defining the threshold as mean+ std$SIGMA FACTOR with a user-defined

SIGMA_FACTOR. Since the thresholding method detects also the corresponding downward transitions, this block is usually

paired with an additional block that removes Up and Down states that are too short, given user-defined minimal Up and

Down durations.

d Hilbert-phase: Instead of detecting threshold crossings on the actual signal, the upstrokes of the upward transitions can be

detected by thresholding the phase signal of the corresponding analytic signal. An adequate threshold value is a matter of defi-

nition, here, we apply � p=2, which corresponds well to the beginning of the upstroke in the actual signal. To be more robust,

the algorithm only selects time points where the threshold is crossed from smaller to larger values and where the crossing is

followed by a peak (phase = 0). This option is applied to the calcium imaging datasets in this paper unless otherwise indicated.

For an accurate estimation of the Hilbert-phase it is crucial that the signals are z-scored and detrended to prevent any offset or

drift.

d minima: As a third option, we adapted and improved the minima detection method presented in.72 This method relies on the

assumption that in an adequately filtered signal that the existence of a local minimum followed by a peak of a certain height

indicates the start of an upward transition. This is particularly suitable for recording techniques characterized by a fast charac-

teristic rise time (i.e., comparable with the theoretical minimum time interval between the passage of two waves on a single

channel, e.g., optical data). We improved this method by including some further refinement on trigger candidates. Under

the assumption that only one minima candidate can lie between two ’’good’’ local maxima candidates, we impose that 1) local

maxima candidates need to have a signal intensity higher than a relative threshold value, determined in a moving window; 2)

local maxima candidates need to be separated by a minimum distance (associated with the characteristic frequency of the

investigate phenomenon); 3) a local minima candidate needs to be followed by a monotonically rising signal for a defined

time interval (also associated to the characteristic frequency of the investigated phenomenon). If more than one candidate min-

imum is found between two local maxima candidates, the last one before the following ’’good’’ maxima is selected.

Trigger clustering (in stage 4)

Wavefronts are defined as clusters of trigger times in the three-dimensional space of the electrode arrangement (x,y) and samples in

time (t). To run a clustering algorithm in this space, the units of the time dimension need to be translated to the units of the spatial di-

mensions. The ideal transformation factor (TIME_SPACE_RATIO) depends on the expected dynamics of the phenomena. A wave that

propagates linearly with v0 is best recognized in the cluster when the time dimension is transformed by a factor v0=ðsampling rate 3

spatial scaleÞ. Thus, if we expect a propagation velocity roughly in the range of � 10 � 20mm
s then the transformation factor for the

calcium imaging data with sampling rate 25 Hz and spatial scale 50m m is � 8 � 16 pixel
frame. Here, we choose a TIME_SPACE_RATIO

of 11 for the calcium imaging data which scales according to the spatial resolution to a factor of 0.25 for the logMUA ECoG data

with a sampling rate of 100 Hz. The clustering is performed by a density-based algorithm (scipy.cluster.DBSCAN), illustrated in Fig-

ure S7. The additional parameters for this algorithm are the minimum number of samples (MIN_SAMPLES_PER_WAVE) and the typical

distance between neighboring sample points (NEIGHBOUR_DISTANCE) and were determined by calibrating test recordings from both

calcium imaging and ECoG data and scaled consistently with the spatial resolution.
e5 Cell Reports Methods 4, 100681, January 22, 2024
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Optical flow estimation (in stage 4)

The optical flow is the pattern of apparent motion in a visual scene, which here corresponds to the recorded signal on the recording

grid. To estimate the optical flow of the spatial propagation of activation, we apply the Horn-Schunck algorithm with a quadratic pen-

alty function and a 3x3 Scharr derivative filter on the phase of the signal (the alternative application using the signal’s amplitude, as

well as different derivative filters can be selected via the configuration). Although other penalty functions, i.e., the Charbonnier func-

tion, are more accurate, we found that here the simple quadratic function is sufficient. This observation is in agreement with Town-

send et al. (2018)61 who report good results for the near quadratic edge case of the penalty function. Their study also guided our

choice of the parameter a = 1:5, determining the weight of the smoothness constraint over the brightness constancy constraint.

The resulting vector field is smoothed by a Gaussian kernel which reflects the dimensions of the expected wave activity with respect

to the spatial and temporal scale of the data.

QUANTIFICATION AND STATISTICAL ANALYSIS

Kernel estimation
The kernel estimations for the plotted distributions in Figures 5 and 6 use scipy.stats.gaussian_kde with the default Scott’s rule101 as

bandwidth method, except for the distributions of inter-wave intervals which use 0.2 times the standard deviation as the kernel size.

Velocity filter
Since the channel-wise velocity measure can produce unreasonably high values when there are near identical time delays between

spatially distant triggers, we cap the presented distributions at 120 mm/s.

Effect size
The effect sizes (ES) for the method comparisons in section ‘‘Interchangeable blocks enable benchmarking of methods’’ between

two sets of sample values (A, B) are calculated according to Hedges (1981)102 as

ESAB =
j<A> � <B>j

s
pooled
AB
s
pooled
AB =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNA � 1Þ$s2

A+ðNB � 1Þ$s2
B

NA+NB � 2

s

using the samples’ average (<>), standard deviation (s), and number (N).
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