001020504 001__ 1020504 001020504 005__ 20240226075307.0 001020504 0247_ $$2doi$$a10.1109/QCE57702.2023.00067 001020504 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-00223 001020504 037__ $$aFZJ-2024-00223 001020504 1001_ $$0P:(DE-Juel1)194305$$aMontanez-Barrera, Jhon Alejandro$$b0$$eCorresponding author$$ufzj 001020504 1112_ $$a2023 IEEE International Conference on Quantum Computing and Engineering (QCE)$$cBellevue, WA$$d2023-09-17 - 2023-09-22$$wUSA 001020504 245__ $$aImproving Performance in Combinatorial Optimization Problems with Inequality Constraints: An Evaluation of the Unbalanced Penalization Method on D-Wave Advantage 001020504 260__ $$c2023 001020504 3367_ $$033$$2EndNote$$aConference Paper 001020504 3367_ $$2DataCite$$aOther 001020504 3367_ $$2BibTeX$$aINPROCEEDINGS 001020504 3367_ $$2DRIVER$$aconferenceObject 001020504 3367_ $$2ORCID$$aLECTURE_SPEECH 001020504 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1705323575_8312$$xAfter Call 001020504 520__ $$aCombinatorial optimization problems are one ofthe target applications of current quantum technology, mainly because of their industrial relevance, the difficulty of solving large instances of them classically, and their equivalence to Ising Hamiltonians using the quadratic unconstrained binary optimization (QUBO) formulation. Many of these applications have inequality constraints, usually encoded as penalization terms in the QUBO formulation using additional variables known as slack variables. The slack variables have two disadvantages: (i) these variables extend the search space of optimal and suboptimal solutions, and (ii) the variables add extra qubits and connections to the quantum algorithm. Recently, a new method known as unbalanced penalization has been presented to avoid using slack variables. This method offers a trade-off between additional slack variables to ensure that the optimal solution is given by the ground state of the Ising Hamiltonian, and using an unbalanced heuristic function to penalize the region where the inequality constraint is violated with the only certainty that the optimal solution will be in the vicinity of the ground state. This work tests the unbalanced penalization method using real quantum hardware on D-Wave Advantage for the traveling salesman problem (TSP). The results show that the unbalanced penalization method outperforms the solutions found using slack variables and sets a new record for the largest TSP solved with quantum 001020504 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0 001020504 536__ $$0G:(DE-Juel1)BMBF-13N16149$$aBMBF 13N16149 - QSolid (BMBF-13N16149)$$cBMBF-13N16149$$x1 001020504 588__ $$aDataset connected to CrossRef Conference 001020504 7001_ $$0P:(DE-HGF)0$$avan den Heuvel, Pim$$b1 001020504 7001_ $$0P:(DE-Juel1)167542$$aWillsch, Dennis$$b2$$ufzj 001020504 7001_ $$0P:(DE-Juel1)138295$$aMichielsen, Kristel$$b3$$ufzj 001020504 773__ $$a10.1109/QCE57702.2023.00067 001020504 8564_ $$uhttps://ieeexplore.ieee.org/document/10313601/ 001020504 8564_ $$uhttps://juser.fz-juelich.de/record/1020504/files/Unbalanced-DWave.pdf$$yOpenAccess 001020504 8564_ $$uhttps://juser.fz-juelich.de/record/1020504/files/Unbalanced-DWave.gif?subformat=icon$$xicon$$yOpenAccess 001020504 8564_ $$uhttps://juser.fz-juelich.de/record/1020504/files/Unbalanced-DWave.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 001020504 8564_ $$uhttps://juser.fz-juelich.de/record/1020504/files/Unbalanced-DWave.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 001020504 8564_ $$uhttps://juser.fz-juelich.de/record/1020504/files/Unbalanced-DWave.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 001020504 909CO $$ooai:juser.fz-juelich.de:1020504$$pdriver$$pVDB$$popen_access$$popenaire 001020504 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194305$$aForschungszentrum Jülich$$b0$$kFZJ 001020504 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b1$$kFZJ 001020504 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167542$$aForschungszentrum Jülich$$b2$$kFZJ 001020504 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138295$$aForschungszentrum Jülich$$b3$$kFZJ 001020504 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0 001020504 9141_ $$y2023 001020504 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 001020504 920__ $$lyes 001020504 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0 001020504 980__ $$aconf 001020504 980__ $$aVDB 001020504 980__ $$aUNRESTRICTED 001020504 980__ $$aI:(DE-Juel1)JSC-20090406 001020504 9801_ $$aFullTexts