001020527 001__ 1020527
001020527 005__ 20240226075309.0
001020527 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-00244
001020527 037__ $$aFZJ-2024-00244
001020527 041__ $$aEnglish
001020527 1001_ $$0P:(DE-Juel1)187560$$aHemmati, Mohammad$$b0$$eCorresponding author$$ufzj
001020527 1112_ $$aWE-Heraeus workshop on First-principles Green function formalisms$$cAthens$$d2023-09-04 - 2023-09-07$$wGreece
001020527 245__ $$aAb initio study of the Van der Waals Superconductor NbSe2
001020527 260__ $$c2023
001020527 3367_ $$033$$2EndNote$$aConference Paper
001020527 3367_ $$2BibTeX$$aINPROCEEDINGS
001020527 3367_ $$2DRIVER$$aconferenceObject
001020527 3367_ $$2ORCID$$aCONFERENCE_POSTER
001020527 3367_ $$2DataCite$$aOutput Types/Conference Poster
001020527 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1706185461_25209$$xInvited
001020527 502__ $$cRWTH Aachen
001020527 520__ $$aWe are studying how the material NbSe2 behaves as a superconductor, using a method called the Korringa-Kohn-Rostoker Green function, along with the Bogoliubov-de Gennes formalism. We introduce small amounts of randomly placed magnetic atoms into the gaps of NbSe2, it changes the superconducting properties initially, but as we increase the concentration of impurities, it eventually suppresses superconductivity. This allows us to manipulate how the superconducting by adjusting the concentration and type of magnetic impurities.
001020527 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001020527 536__ $$0G:(GEPRIS)390534769$$aDFG project 390534769 - EXC 2004: Materie und Licht für Quanteninformation (ML4Q) (390534769)$$c390534769$$x1
001020527 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
001020527 7001_ $$0P:(DE-Juel1)157882$$aRüssmann, Philipp$$b1$$ufzj
001020527 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b2$$ufzj
001020527 8564_ $$uhttps://psi-k.net/we-heraeus-workshop-on-first-principles-green-function-formalisms/
001020527 8564_ $$uhttps://juser.fz-juelich.de/record/1020527/files/Poster%201.0.pdf$$yOpenAccess
001020527 8564_ $$uhttps://juser.fz-juelich.de/record/1020527/files/Poster%201.0.gif?subformat=icon$$xicon$$yOpenAccess
001020527 8564_ $$uhttps://juser.fz-juelich.de/record/1020527/files/Poster%201.0.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001020527 8564_ $$uhttps://juser.fz-juelich.de/record/1020527/files/Poster%201.0.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001020527 8564_ $$uhttps://juser.fz-juelich.de/record/1020527/files/Poster%201.0.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001020527 909CO $$ooai:juser.fz-juelich.de:1020527$$pdriver$$pVDB$$popen_access$$popenaire
001020527 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187560$$aForschungszentrum Jülich$$b0$$kFZJ
001020527 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157882$$aForschungszentrum Jülich$$b1$$kFZJ
001020527 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)157882$$a Institute for Theoretical Physics and Astrophysics, University of Würzburg, Würzburg, Germany$$b1
001020527 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b2$$kFZJ
001020527 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001020527 9141_ $$y2023
001020527 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001020527 920__ $$lyes
001020527 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
001020527 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
001020527 980__ $$aposter
001020527 980__ $$aVDB
001020527 980__ $$aUNRESTRICTED
001020527 980__ $$aI:(DE-Juel1)IAS-1-20090406
001020527 980__ $$aI:(DE-Juel1)PGI-1-20110106
001020527 9801_ $$aFullTexts