001020533 001__ 1020533 001020533 005__ 20240226075309.0 001020533 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-00246 001020533 037__ $$aFZJ-2024-00246 001020533 041__ $$aEnglish 001020533 1001_ $$0P:(DE-Juel1)187560$$aHemmati, Mohammad$$b0$$eCorresponding author$$ufzj 001020533 1112_ $$a3rd ML4Q Students & Postdocs Retreat$$cEitorf$$d2023-07-04 - 2023-07-05$$wGermany 001020533 245__ $$aAb initio study of the Van der Waals Superconductor NbSe2 001020533 260__ $$c2023 001020533 3367_ $$033$$2EndNote$$aConference Paper 001020533 3367_ $$2BibTeX$$aINPROCEEDINGS 001020533 3367_ $$2DRIVER$$aconferenceObject 001020533 3367_ $$2ORCID$$aCONFERENCE_POSTER 001020533 3367_ $$2DataCite$$aOutput Types/Conference Poster 001020533 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1706187329_26513$$xInvited 001020533 502__ $$cRWTH Aachen 001020533 520__ $$aBy applying the Coherent-Potential Approximation (CPA) within the Korringa-Kohn-Rostoker (KKR) method, electronic properties such as the electronic density of states, band structure, and transport properties can be calculated for disordered materials. The CPA in KKR has been successfully used to study a wide range of disordered systems, including alloys, amorphous solids, and materials with impurities or defects.We utilize the Coherent-Potential Approximation (CPA) within the BdG-KKR algorithm to investigate the impact of impurities on the superconducting properties of a crystal system. The incorporation of the CPA in the context of superconductivity closely resembles its application in the normal state scenario, albeit with the doubling of matrix dimensions due to the presence of quasiparticles' particle-hole symmetry. 001020533 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0 001020533 536__ $$0G:(GEPRIS)390534769$$aDFG project 390534769 - EXC 2004: Materie und Licht für Quanteninformation (ML4Q) (390534769)$$c390534769$$x1 001020533 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0 001020533 65027 $$0V:(DE-MLZ)SciArea-170$$2V:(DE-HGF)$$aMagnetism$$x1 001020533 7001_ $$0P:(DE-Juel1)157882$$aRüssmann, Philipp$$b1$$ufzj 001020533 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b2$$ufzj 001020533 8564_ $$uhttps://juser.fz-juelich.de/record/1020533/files/Poster%202.1.pdf$$yOpenAccess 001020533 8564_ $$uhttps://juser.fz-juelich.de/record/1020533/files/Poster%202.gif?subformat=icon$$xicon$$yOpenAccess 001020533 8564_ $$uhttps://juser.fz-juelich.de/record/1020533/files/Poster%202.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 001020533 8564_ $$uhttps://juser.fz-juelich.de/record/1020533/files/Poster%202.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 001020533 8564_ $$uhttps://juser.fz-juelich.de/record/1020533/files/Poster%202.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 001020533 909CO $$ooai:juser.fz-juelich.de:1020533$$pdriver$$pVDB$$popen_access$$popenaire 001020533 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187560$$aForschungszentrum Jülich$$b0$$kFZJ 001020533 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157882$$aForschungszentrum Jülich$$b1$$kFZJ 001020533 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b2$$kFZJ 001020533 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0 001020533 9141_ $$y2023 001020533 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 001020533 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0 001020533 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1 001020533 980__ $$aposter 001020533 980__ $$aVDB 001020533 980__ $$aUNRESTRICTED 001020533 980__ $$aI:(DE-Juel1)IAS-1-20090406 001020533 980__ $$aI:(DE-Juel1)PGI-1-20110106 001020533 9801_ $$aFullTexts