001020536 001__ 1020536
001020536 005__ 20240712112859.0
001020536 0247_ $$2doi$$a10.1016/j.enbuild.2022.112066
001020536 0247_ $$2ISSN$$a0378-7788
001020536 0247_ $$2ISSN$$a1872-6178
001020536 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-00249
001020536 0247_ $$2WOS$$aWOS:000800424900009
001020536 037__ $$aFZJ-2024-00249
001020536 041__ $$aEnglish
001020536 082__ $$a690
001020536 1001_ $$0P:(DE-Juel1)174440$$aMork, Maximilian$$b0$$eCorresponding author
001020536 245__ $$aNonlinear Distributed Model Predictive Control for multi-zone building energy systems
001020536 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2022
001020536 3367_ $$2DRIVER$$aarticle
001020536 3367_ $$2DataCite$$aOutput Types/Journal article
001020536 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1711551911_13950
001020536 3367_ $$2BibTeX$$aARTICLE
001020536 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001020536 3367_ $$00$$2EndNote$$aJournal Article
001020536 520__ $$aThis paper presents a distributed Model Predictive Control (MPC) approach for multi-zone building energy systems based on nonlinear Modelica controller models. The method considers both thermal and hydraulic coupling among different building zones. The iterative and parallel distributed optimization approach builds upon an uncooperative approach for thermal coupling using the Nash equilibrium approach and a cooperative approach for the hydraulic coupling using the Alternating Direction Method of Multipliers (ADMM). Apart from thermal coupling through walls, the modeling takes thermal coupling through doors into account using a data-driven approach, which calculates the inter-zone air exchanges based on temperature differences between door-coupled zones. The hydraulic coupling enables consideration of interactions between the zones introduced by a shared, central Heating, Ventilation and Air Conditioning (HVAC) system. The distributed MPC framework is structured in an easy-scalable, plug-and-play composition, where local systems are automatically assigned to the global coordination scheme. The distributed MPC method is applied to a simulative nonlinear case study, consisting of a six-room-building Modelica model considering both thermal and hydraulic interactions. The benefits of the proposed approach are demonstrated and compared against centralized and decentralized control concepts in terms of energy consumption, discomfort and computation time.
001020536 536__ $$0G:(DE-HGF)POF4-1122$$a1122 - Design, Operation and Digitalization of the Future Energy Grids (POF4-112)$$cPOF4-112$$fPOF IV$$x0
001020536 536__ $$0G:(DE-HGF)POF4-1121$$a1121 - Digitalization and Systems Technology for Flexibility Solutions (POF4-112)$$cPOF4-112$$fPOF IV$$x1
001020536 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001020536 65027 $$0V:(DE-MLZ)SciArea-250$$2V:(DE-HGF)$$aOthers$$x0
001020536 65017 $$0V:(DE-MLZ)GC-110$$2V:(DE-HGF)$$aEnergy$$x0
001020536 7001_ $$0P:(DE-Juel1)8457$$aXhonneux, André$$b1
001020536 7001_ $$0P:(DE-Juel1)172026$$aMüller, Dirk$$b2
001020536 773__ $$0PERI:(DE-600)1502295-X$$a10.1016/j.enbuild.2022.112066$$gVol. 264, p. 112066 -$$p112066 -$$tEnergy and buildings$$v264$$x0378-7788$$y2022
001020536 8564_ $$uhttps://juser.fz-juelich.de/record/1020536/files/Mork2021%20-%20Distributed%20Model%20Predictive%20Control%20for%20multi-zone%20building%20energy%20systems_AcceptedManuscript_FinalPubl.pdf$$yRestricted
001020536 8564_ $$uhttps://juser.fz-juelich.de/record/1020536/files/Mork2021%20-%20Nonlinear%20Distributed%20Model%20Predictive%20Control%20for%20multi-zone%20building%20energy%20systems_Preprint.pdf$$yOpenAccess
001020536 8564_ $$uhttps://juser.fz-juelich.de/record/1020536/files/Mork2021%20-%20Distributed%20Model%20Predictive%20Control%20for%20multi-zone%20building%20energy%20systems_AcceptedManuscript_FinalPubl.gif?subformat=icon$$xicon$$yRestricted
001020536 8564_ $$uhttps://juser.fz-juelich.de/record/1020536/files/Mork2021%20-%20Distributed%20Model%20Predictive%20Control%20for%20multi-zone%20building%20energy%20systems_AcceptedManuscript_FinalPubl.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
001020536 8564_ $$uhttps://juser.fz-juelich.de/record/1020536/files/Mork2021%20-%20Distributed%20Model%20Predictive%20Control%20for%20multi-zone%20building%20energy%20systems_AcceptedManuscript_FinalPubl.jpg?subformat=icon-180$$xicon-180$$yRestricted
001020536 8564_ $$uhttps://juser.fz-juelich.de/record/1020536/files/Mork2021%20-%20Distributed%20Model%20Predictive%20Control%20for%20multi-zone%20building%20energy%20systems_AcceptedManuscript_FinalPubl.jpg?subformat=icon-640$$xicon-640$$yRestricted
001020536 8564_ $$uhttps://juser.fz-juelich.de/record/1020536/files/Mork2021%20-%20Nonlinear%20Distributed%20Model%20Predictive%20Control%20for%20multi-zone%20building%20energy%20systems_Preprint.gif?subformat=icon$$xicon$$yOpenAccess
001020536 8564_ $$uhttps://juser.fz-juelich.de/record/1020536/files/Mork2021%20-%20Nonlinear%20Distributed%20Model%20Predictive%20Control%20for%20multi-zone%20building%20energy%20systems_Preprint.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001020536 8564_ $$uhttps://juser.fz-juelich.de/record/1020536/files/Mork2021%20-%20Nonlinear%20Distributed%20Model%20Predictive%20Control%20for%20multi-zone%20building%20energy%20systems_Preprint.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001020536 8564_ $$uhttps://juser.fz-juelich.de/record/1020536/files/Mork2021%20-%20Nonlinear%20Distributed%20Model%20Predictive%20Control%20for%20multi-zone%20building%20energy%20systems_Preprint.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001020536 909CO $$ooai:juser.fz-juelich.de:1020536$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001020536 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174440$$aForschungszentrum Jülich$$b0$$kFZJ
001020536 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)8457$$aForschungszentrum Jülich$$b1$$kFZJ
001020536 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172026$$aForschungszentrum Jülich$$b2$$kFZJ
001020536 9131_ $$0G:(DE-HGF)POF4-112$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1122$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vDigitalisierung und Systemtechnik$$x0
001020536 9131_ $$0G:(DE-HGF)POF4-112$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1121$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vDigitalisierung und Systemtechnik$$x1
001020536 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-22
001020536 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-22
001020536 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-22
001020536 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-22
001020536 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERG BUILDINGS : 2022$$d2023-10-22
001020536 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-22
001020536 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-22
001020536 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001020536 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-22
001020536 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bENERG BUILDINGS : 2022$$d2023-10-22
001020536 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-22
001020536 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-22
001020536 920__ $$lyes
001020536 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
001020536 9801_ $$aFullTexts
001020536 980__ $$ajournal
001020536 980__ $$aVDB
001020536 980__ $$aI:(DE-Juel1)IEK-10-20170217
001020536 980__ $$aUNRESTRICTED
001020536 981__ $$aI:(DE-Juel1)ICE-1-20170217