001     1020536
005     20240712112859.0
024 7 _ |a 10.1016/j.enbuild.2022.112066
|2 doi
024 7 _ |a 0378-7788
|2 ISSN
024 7 _ |a 1872-6178
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-00249
|2 datacite_doi
024 7 _ |a WOS:000800424900009
|2 WOS
037 _ _ |a FZJ-2024-00249
041 _ _ |a English
082 _ _ |a 690
100 1 _ |a Mork, Maximilian
|0 P:(DE-Juel1)174440
|b 0
|e Corresponding author
245 _ _ |a Nonlinear Distributed Model Predictive Control for multi-zone building energy systems
260 _ _ |a Amsterdam [u.a.]
|c 2022
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1711551911_13950
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a This paper presents a distributed Model Predictive Control (MPC) approach for multi-zone building energy systems based on nonlinear Modelica controller models. The method considers both thermal and hydraulic coupling among different building zones. The iterative and parallel distributed optimization approach builds upon an uncooperative approach for thermal coupling using the Nash equilibrium approach and a cooperative approach for the hydraulic coupling using the Alternating Direction Method of Multipliers (ADMM). Apart from thermal coupling through walls, the modeling takes thermal coupling through doors into account using a data-driven approach, which calculates the inter-zone air exchanges based on temperature differences between door-coupled zones. The hydraulic coupling enables consideration of interactions between the zones introduced by a shared, central Heating, Ventilation and Air Conditioning (HVAC) system. The distributed MPC framework is structured in an easy-scalable, plug-and-play composition, where local systems are automatically assigned to the global coordination scheme. The distributed MPC method is applied to a simulative nonlinear case study, consisting of a six-room-building Modelica model considering both thermal and hydraulic interactions. The benefits of the proposed approach are demonstrated and compared against centralized and decentralized control concepts in terms of energy consumption, discomfort and computation time.
536 _ _ |a 1122 - Design, Operation and Digitalization of the Future Energy Grids (POF4-112)
|0 G:(DE-HGF)POF4-1122
|c POF4-112
|f POF IV
|x 0
536 _ _ |a 1121 - Digitalization and Systems Technology for Flexibility Solutions (POF4-112)
|0 G:(DE-HGF)POF4-1121
|c POF4-112
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
650 2 7 |a Others
|0 V:(DE-MLZ)SciArea-250
|2 V:(DE-HGF)
|x 0
650 1 7 |a Energy
|0 V:(DE-MLZ)GC-110
|2 V:(DE-HGF)
|x 0
700 1 _ |a Xhonneux, André
|0 P:(DE-Juel1)8457
|b 1
700 1 _ |a Müller, Dirk
|0 P:(DE-Juel1)172026
|b 2
773 _ _ |a 10.1016/j.enbuild.2022.112066
|g Vol. 264, p. 112066 -
|0 PERI:(DE-600)1502295-X
|p 112066 -
|t Energy and buildings
|v 264
|y 2022
|x 0378-7788
856 4 _ |u https://juser.fz-juelich.de/record/1020536/files/Mork2021%20-%20Distributed%20Model%20Predictive%20Control%20for%20multi-zone%20building%20energy%20systems_AcceptedManuscript_FinalPubl.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1020536/files/Mork2021%20-%20Nonlinear%20Distributed%20Model%20Predictive%20Control%20for%20multi-zone%20building%20energy%20systems_Preprint.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1020536/files/Mork2021%20-%20Distributed%20Model%20Predictive%20Control%20for%20multi-zone%20building%20energy%20systems_AcceptedManuscript_FinalPubl.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1020536/files/Mork2021%20-%20Distributed%20Model%20Predictive%20Control%20for%20multi-zone%20building%20energy%20systems_AcceptedManuscript_FinalPubl.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1020536/files/Mork2021%20-%20Distributed%20Model%20Predictive%20Control%20for%20multi-zone%20building%20energy%20systems_AcceptedManuscript_FinalPubl.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1020536/files/Mork2021%20-%20Distributed%20Model%20Predictive%20Control%20for%20multi-zone%20building%20energy%20systems_AcceptedManuscript_FinalPubl.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1020536/files/Mork2021%20-%20Nonlinear%20Distributed%20Model%20Predictive%20Control%20for%20multi-zone%20building%20energy%20systems_Preprint.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1020536/files/Mork2021%20-%20Nonlinear%20Distributed%20Model%20Predictive%20Control%20for%20multi-zone%20building%20energy%20systems_Preprint.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1020536/files/Mork2021%20-%20Nonlinear%20Distributed%20Model%20Predictive%20Control%20for%20multi-zone%20building%20energy%20systems_Preprint.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1020536/files/Mork2021%20-%20Nonlinear%20Distributed%20Model%20Predictive%20Control%20for%20multi-zone%20building%20energy%20systems_Preprint.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1020536
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)174440
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)8457
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)172026
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-112
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Digitalisierung und Systemtechnik
|9 G:(DE-HGF)POF4-1122
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-112
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Digitalisierung und Systemtechnik
|9 G:(DE-HGF)POF4-1121
|x 1
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-22
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENERG BUILDINGS : 2022
|d 2023-10-22
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-22
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-22
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ENERG BUILDINGS : 2022
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-22
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21