001020539 001__ 1020539
001020539 005__ 20240712112859.0
001020539 037__ $$aFZJ-2024-00252
001020539 041__ $$aEnglish
001020539 1001_ $$0P:(DE-Juel1)180103$$aAlthaus, Philipp$$b0$$eCorresponding author$$ufzj
001020539 1112_ $$aHelmholtz Energy Conference 2023$$cKoblenz$$d2024-06-12 - 2024-06-13$$gHEC2023$$wGermany
001020539 245__ $$aHeat supply for office buildings: A research journey through different supply levels at the Campus of Forschungszentrum Jülich
001020539 260__ $$c2023
001020539 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1704793744_13784
001020539 3367_ $$033$$2EndNote$$aConference Paper
001020539 3367_ $$2BibTeX$$aINPROCEEDINGS
001020539 3367_ $$2DRIVER$$aconferenceObject
001020539 3367_ $$2DataCite$$aOutput Types/Conference Abstract
001020539 3367_ $$2ORCID$$aOTHER
001020539 520__ $$aWith regard to climate change, the reduction of greenhouse gas emissions, e.g. by introducing and extending the use of renewable energy sources, plays a pivotal role. As a part of the “Energiewende”, the share of renewable energy sources in electricity generation increased rapidly so far, however other sectors, such as the heating sector, are lagging behind. In order to achieve the defined greenhouse gas emission reduction targets, corresponding measures have to be taken in all energy sectors. This especially holds true in the heating sector, which accounts for a high share in carbon dioxide emissions. In the heating sector, key challenges include the integration of renewable energies and waste heat in the heat supply as well as the increase of the efficiency in the building sector. To reduce heating demands while still ensuring thermal comfort for the occupants, different measures can be taken, ranging from design to refurbishment and automation. Due to the low rate of new construction andrenovation in Germany and the European Union in general, the building stock will dominate the overall energy demand of buildings for the coming decades. Therefore, solutions which can be easily retrofitted in existing buildings are essential.Within the “Living Lab Energy Campus” (LLEC) initiative at Forschungszentrum Jülich (FZJ), these challenges are addressed by developing, demonstrating and evaluating various measures ranging from district level over building level to room level by using the real infrastructure at the campus. On the supply side at district level, the integration of waste heat of a water-cooled high performancecomputer from the Jülich Supercomputing Center (JSC) into a low temperature district heating network (LTDH) for the supply of heat to surrounding buildings is studied. Since the waste heat is provided at moderate temperature, heat pumps are installed in the connected buildings to raise the temperature of the supplied heat to the required temperature level of the building's heating system. Cloud-basedmodel predictive controllers have been developed for an overall optimal operation of the LTDH, heat pumps, heat storages and heating distribution systems within the buildings. The developed control methods have been tested and evaluated using a digital twin. After start of operation of the LTDH, a scientific evaluation of different control methods as well as of the ICT setup can be conducted. Besides this, the automation system of a heating substation with heat exchanger fed by a traditional district heating network is connected to the ICTplatform and adapted for scientific monitoring and operation. To raise energy efficiency at building level, innovative cloud-based controllers as well as monitoring methods to raise user awareness with respect to energy demand are developed. For the evaluation of these methods, several buildings including those connected to the LTDH have been equipped on room level with radio-based sensors, measuring indoor air quality and energy demand relatedparameters, and actuators, allowing the local and remote control of heating systems, lighting systems and venetian blinds. Occupants can view sensor data of their room via the web-based graphical user interface “JuControl” and provide setpoints for e.g. temperature control. The implemented setup allows the use as a testbed for a variety of different automation algorithms. The experiments havingalready been conducted show the opportunity to increase the energy efficiency and reveal interesting insights by data analysis. In addition to run and evaluate single measures separately, the developed ICT infrastructure also enables the combined operation of several measures in parallel across different levels and sectors, e.g. a grid-supporting heat pump operation. Finally, a first evaluation of the wide range of measures including the different characteristics regarding costs, implementation efforts and efficiency gains is shown.The general concept of each measure as well as the developed tools, methods and model libraries for optimal design and operation can be transferred to similar use cases. For wider application, also a release of the developed software elements is planned.
001020539 536__ $$0G:(DE-HGF)POF4-1123$$a1123 - Smart Areas and Research Platforms (POF4-112)$$cPOF4-112$$fPOF IV$$x0
001020539 536__ $$0G:(DE-HGF)POF4-1122$$a1122 - Design, Operation and Digitalization of the Future Energy Grids (POF4-112)$$cPOF4-112$$fPOF IV$$x1
001020539 536__ $$0G:(BMWi)03ET1551A$$aEnOB: LLEC: Living Lab Energy Campus (03ET1551A)$$c03ET1551A$$x2
001020539 536__ $$0G:(BMBF)03EK3047$$aForschungs- und Demonstrations-Projekt 'LLEC::JuPilot' (03EK3047)$$c03EK3047$$x3
001020539 536__ $$0G:(BMWi)03EGB0010A$$aEG2050: LLEC-Verwaltungsbau: Klimaneutraler Verwaltungsbau als aktiver Teil des Living Lab Energy Campus (LLEC) (03EGB0010A)$$c03EGB0010A$$x4
001020539 536__ $$0G:(DE-HGF)LLEC-2018-2023$$aLLEC - Living Lab Energy Campus (LLEC-2018-2023)$$cLLEC-2018-2023$$x5
001020539 65027 $$0V:(DE-MLZ)SciArea-250$$2V:(DE-HGF)$$aOthers$$x0
001020539 65017 $$0V:(DE-MLZ)GC-110$$2V:(DE-HGF)$$aEnergy$$x0
001020539 7001_ $$0P:(DE-Juel1)174202$$aHering, Dominik$$b1
001020539 7001_ $$0P:(DE-Juel1)187426$$aJohnen, Sascha$$b2$$ufzj
001020539 7001_ $$0P:(DE-HGF)0$$aKüpper, Christian$$b3
001020539 7001_ $$0P:(DE-Juel1)179347$$aLieberenz, Paul$$b4$$ufzj
001020539 7001_ $$0P:(DE-Juel1)174440$$aMork, Maximilian$$b5$$ufzj
001020539 7001_ $$0P:(DE-Juel1)179143$$aPick, Jana$$b6$$ufzj
001020539 7001_ $$0P:(DE-Juel1)180104$$aRiebesel, Lea$$b7$$ufzj
001020539 7001_ $$0P:(DE-Juel1)177738$$aRedder, Florian$$b8$$ufzj
001020539 7001_ $$0P:(DE-Juel1)176585$$aSchmülgen, Marek$$b9
001020539 7001_ $$0P:(DE-Juel1)179375$$aStock, Jan$$b10$$ufzj
001020539 7001_ $$0P:(DE-Juel1)174481$$aUbachukwu, Eziama$$b11$$ufzj
001020539 7001_ $$0P:(DE-Juel1)180105$$aWestphal, Lidia$$b12$$ufzj
001020539 7001_ $$0P:(DE-Juel1)172026$$aMüller, Dirk$$b13$$ufzj
001020539 7001_ $$0P:(DE-Juel1)8457$$aXhonneux, André$$b14$$ufzj
001020539 8564_ $$uhttps://juser.fz-juelich.de/record/1020539/files/20230613_presentation_HelmholtzEnergyConference_PAlthaus.pdf$$yRestricted
001020539 8564_ $$uhttps://juser.fz-juelich.de/record/1020539/files/20230613_presentation_HelmholtzEnergyConference_PAlthaus.gif?subformat=icon$$xicon$$yRestricted
001020539 8564_ $$uhttps://juser.fz-juelich.de/record/1020539/files/20230613_presentation_HelmholtzEnergyConference_PAlthaus.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
001020539 8564_ $$uhttps://juser.fz-juelich.de/record/1020539/files/20230613_presentation_HelmholtzEnergyConference_PAlthaus.jpg?subformat=icon-180$$xicon-180$$yRestricted
001020539 8564_ $$uhttps://juser.fz-juelich.de/record/1020539/files/20230613_presentation_HelmholtzEnergyConference_PAlthaus.jpg?subformat=icon-640$$xicon-640$$yRestricted
001020539 909CO $$ooai:juser.fz-juelich.de:1020539$$pVDB
001020539 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180103$$aForschungszentrum Jülich$$b0$$kFZJ
001020539 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187426$$aForschungszentrum Jülich$$b2$$kFZJ
001020539 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b3$$kFZJ
001020539 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179347$$aForschungszentrum Jülich$$b4$$kFZJ
001020539 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174440$$aForschungszentrum Jülich$$b5$$kFZJ
001020539 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179143$$aForschungszentrum Jülich$$b6$$kFZJ
001020539 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180104$$aForschungszentrum Jülich$$b7$$kFZJ
001020539 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177738$$aForschungszentrum Jülich$$b8$$kFZJ
001020539 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179375$$aForschungszentrum Jülich$$b10$$kFZJ
001020539 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174481$$aForschungszentrum Jülich$$b11$$kFZJ
001020539 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180105$$aForschungszentrum Jülich$$b12$$kFZJ
001020539 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172026$$aForschungszentrum Jülich$$b13$$kFZJ
001020539 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)8457$$aForschungszentrum Jülich$$b14$$kFZJ
001020539 9131_ $$0G:(DE-HGF)POF4-112$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1123$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vDigitalisierung und Systemtechnik$$x0
001020539 9131_ $$0G:(DE-HGF)POF4-112$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1122$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vDigitalisierung und Systemtechnik$$x1
001020539 9141_ $$y2023
001020539 920__ $$lyes
001020539 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
001020539 980__ $$aabstract
001020539 980__ $$aVDB
001020539 980__ $$aI:(DE-Juel1)IEK-10-20170217
001020539 980__ $$aUNRESTRICTED
001020539 981__ $$aI:(DE-Juel1)ICE-1-20170217