001020543 001__ 1020543
001020543 005__ 20240226075310.0
001020543 0247_ $$2doi$$a10.3389/fpls.2023.1124899
001020543 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-00256
001020543 0247_ $$2pmid$$a37313253
001020543 0247_ $$2WOS$$aWOS:001003255300001
001020543 037__ $$aFZJ-2024-00256
001020543 041__ $$aEnglish
001020543 082__ $$a570
001020543 1001_ $$0P:(DE-HGF)0$$aHan, Yongtao$$b0
001020543 245__ $$aArabidopsis histone deacetylase HD2A and HD2B regulate seed dormancy by repressing DELAY OF GERMINATION 1
001020543 260__ $$aLausanne$$bFrontiers Media$$c2023
001020543 3367_ $$2DRIVER$$aarticle
001020543 3367_ $$2DataCite$$aOutput Types/Journal article
001020543 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1704810828_18680
001020543 3367_ $$2BibTeX$$aARTICLE
001020543 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001020543 3367_ $$00$$2EndNote$$aJournal Article
001020543 520__ $$aSeed dormancy is a crucial developmental transition that affects the adaption and survival of plants. Arabidopsis DELAY OF GERMINATION 1 (DOG1) is known as a master regulator of seed dormancy. However, although several upstream factors of DOG1 have been reported, the exact regulation of DOG1 is not fully understood. Histone acetylation is an important regulatory layer, controlled by histone acetyltransferases and histone deacetylases. Histone acetylation strongly correlates with transcriptionally active chromatin, whereas heterochromatin is generally characterized by hypoacetylated histones. Here we describe that loss of function of two plant-specific histone deacetylases, HD2A and HD2B, resulted in enhanced seed dormancy in Arabidopsis. Interestingly, the silencing of HD2A and HD2B caused hyperacetylation of the DOG1 locus and promoted the expression of DOG1 during seed maturation and imbibition. Knockout of DOG1 could rescue the seed dormancy and partly rescue the disturbed development phenotype of hd2ahd2b. Transcriptomic analysis of the hd2ahd2b line shows that many genes involved in seed development were impaired. Moreover, we demonstrated that HSI2 and HSL1 interact with HD2A and HD2B. In sum, these results suggest that HSI2 and HSL1 might recruit HD2A and HD2B to DOG1 to negatively regulate DOG1 expression and to reduce seed dormancy, consequently, affecting seed development during seed maturation and promoting seed germination during imbibition.
001020543 536__ $$0G:(DE-HGF)POF4-2171$$a2171 - Biological and environmental resources for sustainable use (POF4-217)$$cPOF4-217$$fPOF IV$$x0
001020543 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001020543 7001_ $$0P:(DE-HGF)0$$aGeorgii, Elisabeth$$b1
001020543 7001_ $$0P:(DE-HGF)0$$aPriego-Cubero, Santiago$$b2
001020543 7001_ $$0P:(DE-HGF)0$$aWurm, Christoph J.$$b3
001020543 7001_ $$0P:(DE-HGF)0$$aHüther, Patrick$$b4
001020543 7001_ $$0P:(DE-Juel1)129333$$aHuber, Gregor$$b5$$ufzj
001020543 7001_ $$0P:(DE-Juel1)165733$$aKoller, Robert$$b6$$ufzj
001020543 7001_ $$0P:(DE-HGF)0$$aBecker, Claude$$b7
001020543 7001_ $$0P:(DE-HGF)0$$aDurner, Jörg$$b8
001020543 7001_ $$0P:(DE-HGF)0$$aLindermayr, Christian$$b9$$eCorresponding author
001020543 773__ $$0PERI:(DE-600)2711035-7$$a10.3389/fpls.2023.1124899$$gVol. 14, p. 1124899$$p1124899$$tFrontiers in Functional Plant Ecology$$v14$$x1664-462X$$y2023
001020543 8564_ $$uhttps://juser.fz-juelich.de/record/1020543/files/fpls-14-1124899.pdf$$yOpenAccess
001020543 8564_ $$uhttps://juser.fz-juelich.de/record/1020543/files/fpls-14-1124899.gif?subformat=icon$$xicon$$yOpenAccess
001020543 8564_ $$uhttps://juser.fz-juelich.de/record/1020543/files/fpls-14-1124899.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001020543 8564_ $$uhttps://juser.fz-juelich.de/record/1020543/files/fpls-14-1124899.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001020543 8564_ $$uhttps://juser.fz-juelich.de/record/1020543/files/fpls-14-1124899.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001020543 909CO $$ooai:juser.fz-juelich.de:1020543$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001020543 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129333$$aForschungszentrum Jülich$$b5$$kFZJ
001020543 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165733$$aForschungszentrum Jülich$$b6$$kFZJ
001020543 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2171$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
001020543 9141_ $$y2023
001020543 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
001020543 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001020543 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
001020543 915__ $$0StatID:(DE-HGF)0040$$2StatID$$aPeer Review unknown
001020543 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001020543 920__ $$lyes
001020543 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
001020543 980__ $$ajournal
001020543 980__ $$aVDB
001020543 980__ $$aUNRESTRICTED
001020543 980__ $$aI:(DE-Juel1)IBG-2-20101118
001020543 9801_ $$aFullTexts