

Corrections for Quantitative Image Reconstruction with phenoPET, a Plant Dedicated PET Scanner

JÜLICH Forschungszentrum

Carsten Hinz¹, Daniel Pflugfelder¹, Ralf Metzner¹, Matthias Streun², Jürgen Scheins³, Robert Koller¹ ¹IBG-2, ²ZEA-2, ³INM-4, Forschungszentrum Juelich GmbH, Juelich, Germany

Scientific Motivation

The application of $[^{11}C]CO_2$ to plant leaves allows the labeling of photo-assimilates. Positron Emission Tomography (PET) enables the non-invasive and quantitative imaging of the in vivo transport and allocation of these photo-assimilates in the root systems and below ground storage organs in 3D [1]. The short half life of 11 C permits repetitive administration and measurement with PET to study the response to a treatment (e.g. administration of fertilizer [2], temperature changes, drought).

We operate the PET scanner phenoPET, which is dedicated for plant sciences. phenoPET was developed within German Plant Phenotyping Network (DPPN) and operates Digital Photon Counter (DPC) by Philips (digital Silicon photomultiplier) reading out LYSO crystals. We apply a Line-of-Response (LOR) based image reconstruction with PRESTO [3]. Here, we present the implemented corrections required for quantitative image reconstruction: static sensitivities, dynamic sensitivities, attenuation correction and scatter correction.

Setup Temperature & **Humidity Sensors Sector Boards Coincidences:** Field of View: 348 keV-652 keV Diameter: 180 mm $t_{coin} = 2.5 \,\mathrm{ns}$ Height: 202 mm takeAllGood Energy (FWHM) Timing (FWHM) Spatial 16.6 % @ 511 keV 0.73 ns - 0.80 nsup to 1.6 mm

Background: Emission Reconstruction

Ordinary Poisson Maximum Likelihood Expectation-Maximization (OP-MLEM)

$$\lambda_{j}^{(n+1)} = rac{\lambda_{j}^{(n)}}{\sum_{i}^{N_{j}} c_{ij} s_{i} a_{i}} \sum_{i}^{N_{j}} c_{ij} s_{i} a_{i} rac{p_{i}}{\hat{p}_{i}^{(n)}}$$
 $\hat{p}_{i}^{(n)} = s_{i} a_{i} \cdot \left[\sum_{j}^{N_{i}} c_{ij} \lambda_{j}^{(n)}\right] + VRR_{i} + SE_{i}$
 $s_{i} = s_{i}^{dyn} s_{i}^{static}$

- $\lambda_i^{(n)}$ activity in voxel j
 - p_i prompts for LOR i
- c_{ij} matrix element between voxel j and LOR i
- VRR; Variance Reduced Randoms for LOR i
- s_i^{static} component based normalization for LOR i
- s_i^{dyn} count rate corrections
- a_i attenuation correction for LOR i
- SE_i scatter estimates for LOR i

Background: Transmission Reconstruction

Maximum Likelihood for Transmission Reconstruction (MLTR) [4]

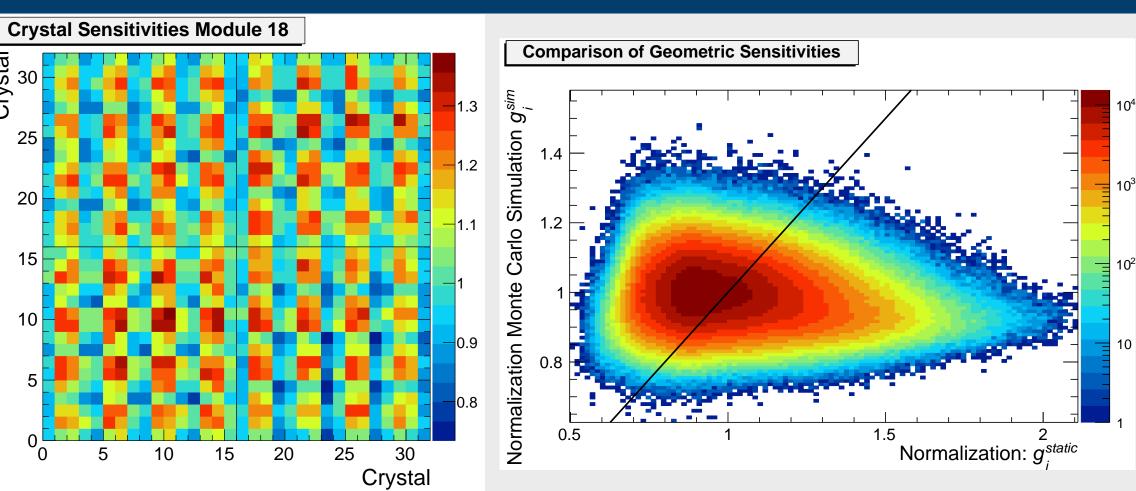
$$\mu_j^{(m+1)} = \mu_j^{(m)} + \alpha_{relax} \frac{\sum_i c_{ij} B_i a_i^{(m)} \left(1 - p_i/\hat{p}_i^{(m)}\right)}{\sum_i c_{ij} \left(B_i a_i^{(m)}\right)^2/\hat{p}_i^{(m)}}$$

$$\hat{p}_i^{(m)} = a_i^{(m)} B_i + VRR_i + SE_i$$

$$a_i^{(m)} = \exp\left(-\sum_i c_{ij} \mu_j^{(m)}\right)$$

 $\mu_i^{(m)}$ attenuation coefficient of voxel j and iteration m B_i expected *trues* without object

Our Default Measurement Durations


- Emission Scan ¹¹C: 30 frames à 5 min=2.5 h
- Transmission Scan: 15 min ⁶⁸Ge rod source @ 25 MBq
- Blank Scan: 2 h ⁶⁸Ge rod source @ 25 MBq

Static Sensitivities: s_i^{static} & s_i^{sim}

Maximum-likelihood fit for component-based normalizations [5]:

$$\hat{t} = s_i \cdot t_i^{ideal} = \epsilon_a \epsilon_b g_i \cdot t_i^{ideal}$$

- $s_i s_i^{static}$ or s_i^{sim}
- g_i geometric sensitivity (sets of 48 LORs)
- ϵ_a sensitivity of crystal a
- tideal expected values from forward projection/simulation

Scatter Estimates SE_i

Data Scatter Simulation Calculation of Second

38 min

17 h 13 min

Monte Carlo (MC) Simulation [6]

$$SE_{i} = rac{\sum_{j} \left(p_{j}^{meas} - VRR_{j}^{meas}
ight)}{\sum_{j} \left(s_{j}^{\epsilon}g_{j}^{sim}t_{j}^{sim} + s_{j}^{\epsilon}sca_{j}^{sim}
ight)} \cdot s_{i}^{\epsilon}sca_{i}^{sim}$$
 $s_{i}^{\epsilon} = \epsilon_{a}^{sim}\epsilon_{b}^{sim}$

t_i^{sim} trues from MC simulation for LOR i

sca^{sim} scattered from MC simulation for LOR i

• Emission: 12×10^8 primaries for with one iteration • MLTR: 12×10^9 or 30×10^9 primaries with three iterations

Dynamic Sensitivities s_i^{dyn} $eT(t) = \sum_{i} \frac{p_{i} - VRR_{i}}{s_{i}^{dyn}}$ $s_{i}^{dyn} = s_{kl}^{dyn} = s_{kl}^{USB} \cdot s_{k}^{DPC} s_{l}^{DPC} \cdot s^{coin}$ $\frac{\text{received packages}}{\text{expected packages}}$ for modules k and l (> 0.3) s_k^{DPC} non-paralizable dead time for singles on module k (> 0.9)remaining global factor (> 0.98)Time [s]

Attenuation and Scatter Correction for Root System of Maize Plant Labeled with $[^{11}C]CO_2$ frame 16/29 2000.0 1500.0 500.0 corrections: normalization addition correction: decay correction addition correction: count rate corrections scatter iteration : attenuation Speedup of Reconstruction by Linear Interpolation of Scatter for 3 Frames

OP-

& 1st

MLEM

3 h 57 min

2 h 7 min

Bias by Linear Interpolation for Speedup of Scatter Correction frame 16/29 Estimated Decays in ROI During Frame -0.02 -0.04 -0.04 Interpolate 0 vs. 0 Interpolate 1 vs. 0 Interpolate 2 vs. 0 Interpolate 3 vs. 0 Interpolate 3 vs. 3 -0.1Activity without Decay Correction [Bq] Bias due to linear interpolation of scatter simulations for different interpolations. Mean relative differences for all ROIs and all frames. Other option: Have a sister institute with a cluster and free capcities. Dots: ROI positions Color≘root type

100 TB RAID: 0 h 44 min¹ 30@2.4 GHz Achieved Dynamic Stability Mean Decay Corrected Activity Concentration in ROI Frame Start $[t_{1/2}]$ AC ME eference: Curie Meter Reference: Average ව 0.186 stability $< 1.5 \,\%$ 0.184 O

Cylinder phantom ($\approx 500\,\mathrm{mL}$) filled with $^{18}\mathrm{F}$

Threads

phenoreco:

phenoreco:

46@2.3 GHz

46@2.3 GHz

5 h 27 min 46 min 4 h 13 min 12 h 33 min 4 h 49 min 12 h 38 min ¹fewer 6 h 27 min 38 min voxels (-90%)

OP-MLEM

3 h 57 min

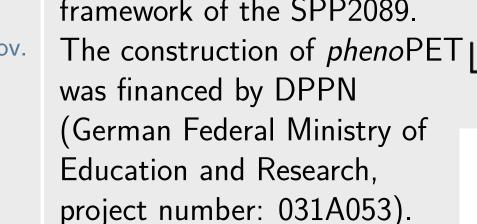
Summary: Established Measurements

Study of flow velocities Dynamic corrections essential Stem: Activity not quantitative due to escaping positrons

Total

Comment

25 h 47 min no interpola-


- Quantitative study of ¹¹C allocation Main addition: attenuation correction Normalization and scatter correction resolve remaining bias
- Routine operation for several projects: Experiments over 2-6 weeks 2-4 measurements per day

Analysis of all 30 frames of a plant measurement (labeling with ¹¹C during 1st frame)

- Integration of activity in Regions of Interest (ROI)
- Ignoring time points before activity reaches a ROI

Minimum 3 Biological replicates Acknowledgements

Plant roots were images in the framework of the SPP2089. was financed by DPPN (German Federal Ministry of Education and Research,

Literature

- Siegfried Jahnke et al. "Combined MRI-PET dissects dynamic changes in plant structures and functions". In: The Plant Journal 59.4 (Aug. 2009), pp. 634-644.
- Ralf Metzner et al. "In Vivo Imaging and Quantification of Carbon Tracer Dynamics in Nodulated Root Systems of Pea Plants". In: Plants 11.5 (2022). ISSN: 2223-7747.
- J. J. Scheins et al. "High performance volume-of-intersection projectors for 3D-PET image reconstruction based on polar symmetries and SIMD vectorisation". In: Physics in Medicine and Biology 60.24 (Nov. 2015), pp. 9349–9375.
- Harold Rothfuss et al. "LSO background radiation as a transmission source using time of flight". In: Physics in Medicine and Biology 59.18 (Aug. 2014), pp. 5483–5500. D. Hogg et al. "Maximum-likelihood estimation of normalisation factors for PET". In: Proc. IEEE Nuclear Science Symp. Conf. Record (Cat. No.01CH37310). Vol. 4. 2001, pp. 2065–2069.
- J. Scheins et al. "High-throughput, accurate Monte Carlo simulation on CPU hardware for PET applications". In: Physics in Medicine & Biology 66.18 (Nov. 2021), p. 185001.

Frame Start [s]