001020571 001__ 1020571 001020571 005__ 20250317091734.0 001020571 0247_ $$2doi$$a10.1093/mnras/stad1655 001020571 0247_ $$2ISSN$$a0035-8711 001020571 0247_ $$2ISSN$$a1365-2966 001020571 0247_ $$2ISSN$$a1365-8711 001020571 0247_ $$2WOS$$aWOS:001011067600017 001020571 037__ $$aFZJ-2024-00266 001020571 082__ $$a520 001020571 1001_ $$0P:(DE-HGF)0$$aZhu, Qirong$$b0$$eCorresponding author 001020571 245__ $$aGiant low surface brightness galaxies in TNG100 001020571 260__ $$aOxford$$bOxford Univ. Press$$c2023 001020571 3367_ $$2DRIVER$$aarticle 001020571 3367_ $$2DataCite$$aOutput Types/Journal article 001020571 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1704804403_13784 001020571 3367_ $$2BibTeX$$aARTICLE 001020571 3367_ $$2ORCID$$aJOURNAL_ARTICLE 001020571 3367_ $$00$$2EndNote$$aJournal Article 001020571 520__ $$aGiant low surface brightness (GLSB) galaxies, such as Malin 1 and UGC 1382, contain the largest stellar discs known. GLSB galaxies also often contain large masses of neutral hydrogen (H I). However, these extreme galaxies' origin and properties remain poorly understood. Using the cosmological simulation IllustrisTNG 100, we identify and select a sample of ~200 galaxies with extended (RHI>50 kpc) and well-defined H I discs, ~6 per cent of the total galaxies in the same stellar mass range (10.2 < log (M*/M⊙) < 11.6). This GLSB sample is heterogeneous, with mixed galaxy morphologies ranging from the most disc-dominated systems to massive ellipticals. These simulated GLSB galaxies are located in massive haloes (Vmax>150 km s−1) and their properties, such as total H I content, stellar disc parameters, star formation rate, and rotation curves, agree with observed GLSB galaxies. We construct a paired control sample to contrast with the GLSB galaxies. The GLSB galaxies tend to have large galaxy spin parameters (40 per cent larger) and larger ex situ stellar mass fractions than the paired control. We find evidence that aligned mergers promote the formation of extended discs and that isolated environments help the survival of those discs across cosmic time. 001020571 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0 001020571 536__ $$0G:(GEPRIS)15499703$$aDFG project 15499703 - TRR 33: Das Dunkle Universum (15499703)$$c15499703$$x1 001020571 536__ $$0G:(DE-Juel-1)ATMLAO$$aATMLAO - ATML Application Optimization and User Service Tools (ATMLAO)$$cATMLAO$$x2 001020571 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 001020571 7001_ $$00000-0002-2097-7543$$aPérez-Montaño, Luis Enrique$$b1 001020571 7001_ $$00000-0002-9495-0079$$aRodriguez-Gomez, Vicente$$b2 001020571 7001_ $$00000-0002-2897-9121$$aCervantes Sodi, Bernardo$$b3 001020571 7001_ $$0P:(DE-Juel1)192488$$aZjupa, Jolanta$$b4$$ufzj 001020571 7001_ $$00000-0003-3816-7028$$aMarinacci, Federico$$b5 001020571 7001_ $$00000-0001-8593-7692$$aVogelsberger, Mark$$b6 001020571 7001_ $$0P:(DE-HGF)0$$aHernquist, Lars$$b7 001020571 773__ $$0PERI:(DE-600)2016084-7$$a10.1093/mnras/stad1655$$gVol. 523, no. 3, p. 3991 - 4014$$n3$$p3991 - 4014$$tMonthly notices of the Royal Astronomical Society$$v523$$x0035-8711$$y2023 001020571 8564_ $$uhttps://juser.fz-juelich.de/record/1020571/files/stad1655.pdf$$yRestricted 001020571 8564_ $$uhttps://juser.fz-juelich.de/record/1020571/files/stad1655.gif?subformat=icon$$xicon$$yRestricted 001020571 8564_ $$uhttps://juser.fz-juelich.de/record/1020571/files/stad1655.jpg?subformat=icon-1440$$xicon-1440$$yRestricted 001020571 8564_ $$uhttps://juser.fz-juelich.de/record/1020571/files/stad1655.jpg?subformat=icon-180$$xicon-180$$yRestricted 001020571 8564_ $$uhttps://juser.fz-juelich.de/record/1020571/files/stad1655.jpg?subformat=icon-640$$xicon-640$$yRestricted 001020571 909CO $$ooai:juser.fz-juelich.de:1020571$$pVDB 001020571 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192488$$aForschungszentrum Jülich$$b4$$kFZJ 001020571 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0 001020571 9141_ $$y2023 001020571 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-22$$wger 001020571 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-22 001020571 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-22 001020571 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-22 001020571 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-22 001020571 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-22 001020571 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-22 001020571 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-22 001020571 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMON NOT R ASTRON SOC : 2022$$d2023-10-22 001020571 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-22 001020571 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-22 001020571 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-22 001020571 920__ $$lno 001020571 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0 001020571 980__ $$ajournal 001020571 980__ $$aVDB 001020571 980__ $$aI:(DE-Juel1)JSC-20090406 001020571 980__ $$aUNRESTRICTED