001020574 001__ 1020574
001020574 005__ 20250204113747.0
001020574 0247_ $$2doi$$a10.1109/JSTARS.2024.3350385
001020574 0247_ $$2ISSN$$a1939-1404
001020574 0247_ $$2ISSN$$a2151-1535
001020574 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-00269
001020574 0247_ $$2WOS$$aWOS:001166899900001
001020574 037__ $$aFZJ-2024-00269
001020574 082__ $$a520
001020574 1001_ $$0P:(DE-Juel1)191143$$aPasetto, Edoardo$$b0
001020574 245__ $$aKernel Approximation on a Quantum Annealer for Remote Sensing Regression Tasks
001020574 260__ $$aNew York, NY$$bIEEE$$c2024
001020574 3367_ $$2DRIVER$$aarticle
001020574 3367_ $$2DataCite$$aOutput Types/Journal article
001020574 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1706858565_18884
001020574 3367_ $$2BibTeX$$aARTICLE
001020574 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001020574 3367_ $$00$$2EndNote$$aJournal Article
001020574 520__ $$aThe increased development of quantum computing hardware in recent years has led to increased interest in its application to various areas. Finding effective ways to apply this technology to real-world use-cases is a current area of research in the (RS) community. This paper proposes an (AQKS) kernel approximation algorithm with parallel quantum annealing on the D-Wave Advantage quantum annealer. The proposed implementation is applied to (SVR) and (GPR) algorithms. To evaluate its performance, a regression problem related to estimating chlorophyll concentration in water is considered. The proposed algorithm was tested on two real-world datasets and its results were compared with those obtained by a classical implementation of kernel-based algorithms and a (RKS) implementation. On average, the parallel (AQKS) achieved comparable results to the benchmark methods, indicating its potential for future applications.
001020574 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001020574 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x1
001020574 536__ $$0G:(DE-Juel-1)DEA02266$$aEUROCC-2 (DEA02266)$$cDEA02266$$x2
001020574 536__ $$0G:(EU-Grant)951733$$aRAISE - Research on AI- and Simulation-Based Engineering at Exascale (951733)$$c951733$$fH2020-INFRAEDI-2019-1$$x3
001020574 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001020574 7001_ $$0P:(DE-Juel1)132239$$aRiedel, Morris$$b1
001020574 7001_ $$0P:(DE-Juel1)138295$$aMichielsen, Kristel$$b2
001020574 7001_ $$0P:(DE-Juel1)171343$$aCavallaro, Gabriele$$b3
001020574 773__ $$0PERI:(DE-600)2457423-5$$a10.1109/JSTARS.2024.3350385$$gp. 1 - 9$$p3262 - 3269$$tIEEE journal of selected topics in applied earth observations and remote sensing$$v17$$x1939-1404$$y2024
001020574 8564_ $$uhttps://juser.fz-juelich.de/record/1020574/files/FINAL%20VERSION.pdf$$yOpenAccess
001020574 8564_ $$uhttps://juser.fz-juelich.de/record/1020574/files/Kernel_Approximation_on_a_Quantum_Annealer_for_Remote_Sensing_Regression_Tasks.pdf$$yOpenAccess
001020574 8564_ $$uhttps://juser.fz-juelich.de/record/1020574/files/FINAL%20VERSION.gif?subformat=icon$$xicon$$yOpenAccess
001020574 8564_ $$uhttps://juser.fz-juelich.de/record/1020574/files/FINAL%20VERSION.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001020574 8564_ $$uhttps://juser.fz-juelich.de/record/1020574/files/FINAL%20VERSION.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001020574 8564_ $$uhttps://juser.fz-juelich.de/record/1020574/files/FINAL%20VERSION.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001020574 8564_ $$uhttps://juser.fz-juelich.de/record/1020574/files/Kernel_Approximation_on_a_Quantum_Annealer_for_Remote_Sensing_Regression_Tasks.gif?subformat=icon$$xicon$$yOpenAccess
001020574 8564_ $$uhttps://juser.fz-juelich.de/record/1020574/files/Kernel_Approximation_on_a_Quantum_Annealer_for_Remote_Sensing_Regression_Tasks.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001020574 8564_ $$uhttps://juser.fz-juelich.de/record/1020574/files/Kernel_Approximation_on_a_Quantum_Annealer_for_Remote_Sensing_Regression_Tasks.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001020574 8564_ $$uhttps://juser.fz-juelich.de/record/1020574/files/Kernel_Approximation_on_a_Quantum_Annealer_for_Remote_Sensing_Regression_Tasks.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001020574 8767_ $$d2024-01-10$$eAPC$$jZahlung erfolgt$$zToken IEEE
001020574 909CO $$ooai:juser.fz-juelich.de:1020574$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001020574 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191143$$aForschungszentrum Jülich$$b0$$kFZJ
001020574 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132239$$aForschungszentrum Jülich$$b1$$kFZJ
001020574 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138295$$aForschungszentrum Jülich$$b2$$kFZJ
001020574 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171343$$aForschungszentrum Jülich$$b3$$kFZJ
001020574 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001020574 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x1
001020574 9141_ $$y2024
001020574 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001020574 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001020574 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001020574 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001020574 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-19
001020574 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-19
001020574 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-03T10:38:59Z
001020574 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-03T10:38:59Z
001020574 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-04-03T10:38:59Z
001020574 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-19
001020574 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-19
001020574 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-19
001020574 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE J-STARS : 2022$$d2024-12-19
001020574 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bIEEE J-STARS : 2022$$d2024-12-19
001020574 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001020574 980__ $$ajournal
001020574 980__ $$aVDB
001020574 980__ $$aUNRESTRICTED
001020574 980__ $$aI:(DE-Juel1)JSC-20090406
001020574 980__ $$aAPC
001020574 9801_ $$aAPC
001020574 9801_ $$aFullTexts