Hauptseite > Publikationsdatenbank > Kernel Approximation on a Quantum Annealer for Remote Sensing Regression Tasks > print |
001 | 1020574 | ||
005 | 20250204113747.0 | ||
024 | 7 | _ | |a 10.1109/JSTARS.2024.3350385 |2 doi |
024 | 7 | _ | |a 1939-1404 |2 ISSN |
024 | 7 | _ | |a 2151-1535 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2024-00269 |2 datacite_doi |
024 | 7 | _ | |a WOS:001166899900001 |2 WOS |
037 | _ | _ | |a FZJ-2024-00269 |
082 | _ | _ | |a 520 |
100 | 1 | _ | |a Pasetto, Edoardo |0 P:(DE-Juel1)191143 |b 0 |
245 | _ | _ | |a Kernel Approximation on a Quantum Annealer for Remote Sensing Regression Tasks |
260 | _ | _ | |a New York, NY |c 2024 |b IEEE |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1706858565_18884 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The increased development of quantum computing hardware in recent years has led to increased interest in its application to various areas. Finding effective ways to apply this technology to real-world use-cases is a current area of research in the (RS) community. This paper proposes an (AQKS) kernel approximation algorithm with parallel quantum annealing on the D-Wave Advantage quantum annealer. The proposed implementation is applied to (SVR) and (GPR) algorithms. To evaluate its performance, a regression problem related to estimating chlorophyll concentration in water is considered. The proposed algorithm was tested on two real-world datasets and its results were compared with those obtained by a classical implementation of kernel-based algorithms and a (RKS) implementation. On average, the parallel (AQKS) achieved comparable results to the benchmark methods, indicating its potential for future applications. |
536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 0 |
536 | _ | _ | |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5112 |c POF4-511 |f POF IV |x 1 |
536 | _ | _ | |a EUROCC-2 (DEA02266) |0 G:(DE-Juel-1)DEA02266 |c DEA02266 |x 2 |
536 | _ | _ | |a RAISE - Research on AI- and Simulation-Based Engineering at Exascale (951733) |0 G:(EU-Grant)951733 |c 951733 |f H2020-INFRAEDI-2019-1 |x 3 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Riedel, Morris |0 P:(DE-Juel1)132239 |b 1 |
700 | 1 | _ | |a Michielsen, Kristel |0 P:(DE-Juel1)138295 |b 2 |
700 | 1 | _ | |a Cavallaro, Gabriele |0 P:(DE-Juel1)171343 |b 3 |
773 | _ | _ | |a 10.1109/JSTARS.2024.3350385 |g p. 1 - 9 |0 PERI:(DE-600)2457423-5 |p 3262 - 3269 |t IEEE journal of selected topics in applied earth observations and remote sensing |v 17 |y 2024 |x 1939-1404 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1020574/files/FINAL%20VERSION.pdf |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1020574/files/Kernel_Approximation_on_a_Quantum_Annealer_for_Remote_Sensing_Regression_Tasks.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1020574/files/FINAL%20VERSION.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1020574/files/FINAL%20VERSION.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1020574/files/FINAL%20VERSION.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1020574/files/FINAL%20VERSION.jpg?subformat=icon-640 |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1020574/files/Kernel_Approximation_on_a_Quantum_Annealer_for_Remote_Sensing_Regression_Tasks.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1020574/files/Kernel_Approximation_on_a_Quantum_Annealer_for_Remote_Sensing_Regression_Tasks.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1020574/files/Kernel_Approximation_on_a_Quantum_Annealer_for_Remote_Sensing_Regression_Tasks.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1020574/files/Kernel_Approximation_on_a_Quantum_Annealer_for_Remote_Sensing_Regression_Tasks.jpg?subformat=icon-640 |
909 | C | O | |o oai:juser.fz-juelich.de:1020574 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p ec_fundedresources |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)191143 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)132239 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)138295 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)171343 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5112 |x 1 |
914 | 1 | _ | |y 2024 |
915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
915 | p | c | |a DOAJ Journal |2 APC |0 PC:(DE-HGF)0003 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-19 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-19 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-04-03T10:38:59Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-04-03T10:38:59Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2024-04-03T10:38:59Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-19 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-19 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-19 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b IEEE J-STARS : 2022 |d 2024-12-19 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b IEEE J-STARS : 2022 |d 2024-12-19 |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|