001     1020574
005     20250204113747.0
024 7 _ |a 10.1109/JSTARS.2024.3350385
|2 doi
024 7 _ |a 1939-1404
|2 ISSN
024 7 _ |a 2151-1535
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-00269
|2 datacite_doi
024 7 _ |a WOS:001166899900001
|2 WOS
037 _ _ |a FZJ-2024-00269
082 _ _ |a 520
100 1 _ |a Pasetto, Edoardo
|0 P:(DE-Juel1)191143
|b 0
245 _ _ |a Kernel Approximation on a Quantum Annealer for Remote Sensing Regression Tasks
260 _ _ |a New York, NY
|c 2024
|b IEEE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1706858565_18884
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The increased development of quantum computing hardware in recent years has led to increased interest in its application to various areas. Finding effective ways to apply this technology to real-world use-cases is a current area of research in the (RS) community. This paper proposes an (AQKS) kernel approximation algorithm with parallel quantum annealing on the D-Wave Advantage quantum annealer. The proposed implementation is applied to (SVR) and (GPR) algorithms. To evaluate its performance, a regression problem related to estimating chlorophyll concentration in water is considered. The proposed algorithm was tested on two real-world datasets and its results were compared with those obtained by a classical implementation of kernel-based algorithms and a (RKS) implementation. On average, the parallel (AQKS) achieved comparable results to the benchmark methods, indicating its potential for future applications.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 1
536 _ _ |a EUROCC-2 (DEA02266)
|0 G:(DE-Juel-1)DEA02266
|c DEA02266
|x 2
536 _ _ |a RAISE - Research on AI- and Simulation-Based Engineering at Exascale (951733)
|0 G:(EU-Grant)951733
|c 951733
|f H2020-INFRAEDI-2019-1
|x 3
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Riedel, Morris
|0 P:(DE-Juel1)132239
|b 1
700 1 _ |a Michielsen, Kristel
|0 P:(DE-Juel1)138295
|b 2
700 1 _ |a Cavallaro, Gabriele
|0 P:(DE-Juel1)171343
|b 3
773 _ _ |a 10.1109/JSTARS.2024.3350385
|g p. 1 - 9
|0 PERI:(DE-600)2457423-5
|p 3262 - 3269
|t IEEE journal of selected topics in applied earth observations and remote sensing
|v 17
|y 2024
|x 1939-1404
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1020574/files/FINAL%20VERSION.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1020574/files/Kernel_Approximation_on_a_Quantum_Annealer_for_Remote_Sensing_Regression_Tasks.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1020574/files/FINAL%20VERSION.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1020574/files/FINAL%20VERSION.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1020574/files/FINAL%20VERSION.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1020574/files/FINAL%20VERSION.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1020574/files/Kernel_Approximation_on_a_Quantum_Annealer_for_Remote_Sensing_Regression_Tasks.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1020574/files/Kernel_Approximation_on_a_Quantum_Annealer_for_Remote_Sensing_Regression_Tasks.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1020574/files/Kernel_Approximation_on_a_Quantum_Annealer_for_Remote_Sensing_Regression_Tasks.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1020574/files/Kernel_Approximation_on_a_Quantum_Annealer_for_Remote_Sensing_Regression_Tasks.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1020574
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)191143
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)132239
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)138295
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)171343
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 1
914 1 _ |y 2024
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-04-03T10:38:59Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-04-03T10:38:59Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-04-03T10:38:59Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-19
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IEEE J-STARS : 2022
|d 2024-12-19
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b IEEE J-STARS : 2022
|d 2024-12-19
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21