001020577 001__ 1020577
001020577 005__ 20240226075311.0
001020577 020__ $$a978-9935-9697-8-1
001020577 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-00272
001020577 037__ $$aFZJ-2024-00272
001020577 1001_ $$0P:(DE-Juel1)178695$$aSedona, Rocco$$b0$$eCorresponding author$$ufzj
001020577 245__ $$aScalable Deep Learning for Remote Sensing with High Performance Computing$$f - 2023-05-04
001020577 260__ $$c2023
001020577 300__ $$a139 p.
001020577 3367_ $$2DataCite$$aOutput Types/Dissertation
001020577 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
001020577 3367_ $$2ORCID$$aDISSERTATION
001020577 3367_ $$2BibTeX$$aPHDTHESIS
001020577 3367_ $$02$$2EndNote$$aThesis
001020577 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1704796405_13784
001020577 3367_ $$2DRIVER$$adoctoralThesis
001020577 502__ $$aDissertation, University of Iceland, 2023$$bDissertation$$cUniversity of Iceland$$d2023$$o2023-05-04
001020577 520__ $$aAdvances in remote sensing (RS) missions in recent decades have greatly increased the volume of data that is continually acquired and made available to end users, who can utilize it in a variety of Earth observation (EO) applications. land cover (LC) maps play a key role in monitoring the Earth’s surface, providing scientists and policymakers with an accurate view of the evolution of the landscape and helping them address pressing questions, from efficient resource planning to resilience to climate change. Due to the use of classical machine learning (ML) and more recently of deep learning (DL) methods, the information content of RS data can be exploited to an unprecedented degree, fostering research, development, and deployment of workloads to address open challenges for EO applications, including LC classification. However, the larger size of the datasets needed to train state-of-the-art (SotA) DL models and the need to utilize them at scale increases the time to deployment, which can hinder their effective utilization. Adopting strategies for distributed deep learning (DDL) on high performance computing (HPC) systems provides the opportunity to speed up the training of the models, allowing faster development times for researchers. Since space agencies operate a variety of missions, data acquired by different sensors can be used to increase the temporal resolution at which a certain area is observed, with potential improvements in the accuracy of the ML/DL models. The thesis objectives are formulated with these premises in mind and were investigated using a combination of methodologies to exploit the dedicated resources of HPC systems, contributing to addressing new questions on the adoption of DDL methods for EO applications and to familiarize the RS community with such approaches, which can be of great
001020577 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001020577 536__ $$0G:(EU-Grant)956748$$aADMIRE - Adaptive multi-tier intelligent data manager for Exascale (956748)$$c956748$$fH2020-JTI-EuroHPC-2019-1$$x1
001020577 536__ $$0G:(EU-Grant)951733$$aRAISE - Research on AI- and Simulation-Based Engineering at Exascale (951733)$$c951733$$fH2020-INFRAEDI-2019-1$$x2
001020577 588__ $$aDataset connected to DataCite
001020577 8564_ $$uhttps://hdl.handle.net/20.500.11815/4189
001020577 8564_ $$uhttps://juser.fz-juelich.de/record/1020577/files/FZJ-2024-00272.pdf$$yOpenAccess
001020577 8564_ $$uhttps://juser.fz-juelich.de/record/1020577/files/FZJ-2024-00272.gif?subformat=icon$$xicon$$yOpenAccess
001020577 8564_ $$uhttps://juser.fz-juelich.de/record/1020577/files/FZJ-2024-00272.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001020577 8564_ $$uhttps://juser.fz-juelich.de/record/1020577/files/FZJ-2024-00272.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001020577 8564_ $$uhttps://juser.fz-juelich.de/record/1020577/files/FZJ-2024-00272.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001020577 909CO $$ooai:juser.fz-juelich.de:1020577$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
001020577 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178695$$aForschungszentrum Jülich$$b0$$kFZJ
001020577 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001020577 9141_ $$y2023
001020577 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001020577 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001020577 980__ $$aphd
001020577 980__ $$aVDB
001020577 980__ $$aUNRESTRICTED
001020577 980__ $$abook
001020577 980__ $$aI:(DE-Juel1)JSC-20090406
001020577 9801_ $$aFullTexts