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Abstract

Advances in remote sensing (RS) missions in recent decades have greatly increased the
volume of data that is continually acquired and made available to end users, who can
utilize it in a variety of Earth observation (EO) applications. land cover (LC) maps play
a key role in monitoring the Earth’s surface, providing scientists and policymakers with
an accurate view of the evolution of the landscape and helping them address pressing
questions, from efficient resource planning to resilience to climate change. Due to the use
of classical machine learning (ML) and more recently of deep learning (DL) methods, the
information content of RS data can be exploited to an unprecedented degree, fostering
research, development, and deployment of workloads to address open challenges for EO
applications, including LC classification. However, the larger size of the datasets needed
to train state-of-the-art (SotA) DL models and the need to utilize them at scale increases
the time to deployment, which can hinder their effective utilization. Adopting strategies
for distributed deep learning (DDL) on high performance computing (HPC) systems pro-
vides the opportunity to speed up the training of the models, allowing faster development
times for researchers. Since space agencies operate a variety of missions, data acquired
by different sensors can be used to increase the temporal resolution at which a certain
area is observed, with potential improvements in the accuracy of the ML/DL models.
The thesis objectives are formulated with these premises in mind and were investigated
using a combination of methodologies to exploit the dedicated resources of HPC systems,
contributing to addressing new questions on the adoption of DDL methods for EO appli-
cations and to familiarize the RS community with such approaches, which can be of great
value.

Keywords— High Performance Computing, Remote Sensing, Distributed Deep Learn-
ing, Land Cover Classification






Utdrattur

Framfor fjarkonnunar & sidustu aratugum hefur leitt til mikillar aukningar 1 st6dugri 6flun
gagna sem gerd eru adgengileg til enda notenda sem geta hagnytt pau i forritum fyrir
skodun jardarinnar. Landpekjukort spila lykil hlutverk {1 eftirliti med yfirbordi jardar.
Pau veita visindafélki og stefnumotendum skyra syn & proun i landslaginu og hjalpar
peim ad finna svor vio adkallandi vandamalum allt fra skilvirkri skipulagningu audlinda
ad poli jardar gegn loflagsbreytingum. Vegna notkunnar klassiskra adferda i vélndmi og
nylegrar notkunnar djuptauganetsadferda er haegt ad nyta efni ur fjarkonnun ad umfangi
sme a0 ekki hefur sést adur. Pad ytir undir rannséknir, préun og dreifingu a4 nyjum
kerfum sem ad leita til pess ad leysa ntuverandi askoranir & svioi EO forrita eins og LC
flokkunar. Aukin steerd gagnasafna sem parf til pess ad pjalfa nyjustu SotA DL model
og porfin til pess ad nota pau a storum skala hefur hins vegar orsakast i auknum tima
préunar sem ad getur komid i veg fyrir skilvirka nytingu beirra. Innleiding stefnu fyrir
dreifdan djupleerdom & ofurtélvukerfum gefur teekifeeri til pess ad hrada pjalfun moédelanna
og rannsakendum ad auuka hrada i préun og minnka tima pangad til virdi er fengio
ur ferlinu. Par sem a0 geimferdastofnanir framkveema mismunandi verkefni pa er haegt
a0 nota gognin sem safnad er til pess ad auka “temporal resolution” sem ad svaedi eru
skodud med, einnig med mogulegum bactingu & nakveemni 1 vélnams og djupleerdéms
médelum. Markmio ritgerdarinnar eru gerd 0t fra pessum forsendum og voru rannsokud
med blondu af adferoum til pess ad nyta audlindir i ofurtélvukerfum, leggja af morkum
ad svara spurningum um nytingu djiplerdéomsadferoa fyrir EO hugbtunad og til pess ad
kynna fjarkonnunarsamfélaginu fyrir adferoum likt og pessum sem ad geta skapad mikid
veromaeti.

Lykiloro— High Performance Computing, Remote Sensing, Distributed Deep Learning,
Land Cover Classification
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1. Introduction

1.1. Motivation

In recent decades remote sensing (RS) missions for Earth observation (EO) have been
providing increasingly large amounts of multi-source data (e.g., optical, radar, lidar), fos-
tering the development of applications in a variety of fields, including monitoring the
evolution of land cover (LC), damage assessment during and after natural disasters and
providing insights valuable to determine the impact of climate change [62]. Scientists and
policymakers rely heavily on the analysis carried out on such data to study and address
pressing issues faced by humankind [61]. Space agencies operate missions that utilize a
variety of satellites, such as National Aeronautics and Space Administration (NASA)’s
Earth Observing System project ! and Copernicus, a program of the European Union 2, to
acquire and provide information on Earth’s land surfaces, oceans, and atmosphere to the
users. With over 155 PB of data downloaded since the start of operations and an average
volume of 9.6 TB published daily, the Sentinel-2 (S2) mission continually provides newly
acquired imagery of the Earth’s surface. ML has long been used for RS applications, and
since an ever-increasing number of missions for EO are becoming operational, the field
of RS is not excluded from the DL “gold rush”, benefiting greatly from such methods
[115]. In recent years, DL has provided a means to advance many applications, relying
on greater availability of data and graphics processing units (GPUs), which have been
shown to speed up the training of such models by a factor of 50 compared to central
processing units (CPUs) [17, 86]. DL thrives on large datasets, learning complex repre-
sentations by optimizing the parameters of each layer. Researchers utilize DL. models for
image fusion and registration, object and change detection, LC classification, and seg-
mentation [61]. However, large DL models also require large datasets. Consequently, the
training and deployment of these models call for utilizing systems with dedicated hard-
ware and software. High performance computing (HPC) systems provide dedicated and
highly optimized resources necessary for large-scale training and deployment of DL mod-
els. Through a community effort by key players in this field, benchmarking of DL models
is carried out regularly to quantify the advances of the deployment of such algorithms on
HPC systems [26]. Despite the progress in these fields, several challenges still exist for the
science community. Although additional RS datasets are becoming available, addressing
important requirements in real EO applications is still challenging. These requirements
include (i) the ability to exploit global-scale information while focusing on specific areas

1https://eospso.nasa.gov/content/nasas—earth—observing—system—project—science—office
’https://scihub.copernicus.eu/twiki/do/view/SciHubWebPortal/AnnualReport2021


https://eospso.nasa.gov/content/nasas-earth-observing-system-project-science-office
https://scihub.copernicus.eu/twiki/do/view/SciHubWebPortal/AnnualReport2021

2 CHAPTER 1. INTRODUCTION

of interest (Asol), (ii) the use of data at multiple spatial resolutions acquired at different
times from missions with heterogeneous sensors to (iii) enable cutting-edge research us-
ing continual streams of large volumes of data. To meet these requirements, a framework
must be designed with flexibility in mind, allowing it to be adapted over time. Modularity
plays a crucial role in this since new technologies must be continually integrated to provide
access to a multitude of data sources and enhance performance. For example, engineering
efforts can be made to optimize the utilization of available datasets on HPC machines by
using file formats suitable for parallel input/output (I/O) without disrupting the func-
tioning of subsequent data analysis modules in the pipeline. This will allow researchers to
conduct studies on the fusion of multi-source data. Besides technical challenges posed by
retrieving large datasets and their utilization in an HPC environment, scaling the train-
ing of DLL models also requires a careful selection of training modalities and optimization
algorithms. The two main approaches to speed up the training of the models in a DDL
settings are data parallelism and model parallelism. While the former trains a copy of the
model on each device feeding different chunks of the dataset, in the latter approach, the
model is split among the devices [9]. Due to its more straightforward implementation,
until recently, data parallelism libraries were more available (e.g., Horovod 3, Tensorflow
MirroredStrategy * and PyTorch DistributedDataParallel ®) than model parallelism ones.
However, the landscape is rapidly changing, e.g., with the application programming in-
terface (API) provided by DeepSpeed ©, that aims to increase access to training of large
DL architecture through a combination of model and data parallelism, pipelining and
CPU offloading. Developers have been publishing code to enable access to DDL. Still,
strategies to compensate for the degradation of the models trained using large batch sizes
must be adopted to achieve near-linear scalability [37]. The difficulty of training using
large batch sizes is a known issue in the literature. It has been empirically observed in
several studies [43, 64, 89, 113] as well as analyzed from a theoretical point of view [47,
108], and result in poor generalization capabilities that hinder the performance of the DL
models at deployment. Not only can traditional ML methods utilized on RS data [69]
in some specific settings still compete with advanced DL models [39], but they can also
provide means of analyzing and visualizing data in a human-friendly way [59, 16]. Space
agencies run concurrent missions that can share overall objectives, operating satellites
equipped with sensors that are similar to some degree. As a concrete example, S2 and
Landsat-8 (L.8) both carry on board multi-spectral instruments for the observation of our
planet. Still, the spectral and spatial characteristics of the instruments are not entirely
identical. Commercial operators are now playing a significant role, offering products at
high temporal and spatial resolution, such as the Planet Fusion products made available
by Planet”, emphasizing the importance of integrating multi-source information. It can
be seen that various elements come into play and need to be combined: (i) the retrieval
and extraction of informative content from large amounts of data, (ii) the DL libraries
for scaling training, to reduce the time to convergence of the models as well as reduce
the time to deployment at inference, and (iii) heterogeneous HPC systems with dedicated

3https://horovod.ai/
‘https://www.tensorflow.org/api_docs/python/tf/distribute/MirroredStrategy
Shttps://pytorch.org/docs/stable/nn.html#torch.nn.parallel.DistributedDataParallel
Shttps://www.deepspeed.ai/
"https://assets.planet.com/docs/Planet_fusion_specification_March_2021.pdf
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devices and environments. Such a complex set of hardware and software needs to operate
in unison to fully realize the performance enhancement of DL models trained on large
data sets in an HPC environment for addressing classification tasks in the EO domain.

1.2. Thesis Objectives

Considering the critical challenges introduced in Sect. 1.1, it follows that there is an urgent
need for additional investigations on the adoption of DL at scale in the RS community. A
number of questions naturally arise from the overview provided in Sect. 1.1, namely: (7)
1s it possible to capitalize on the potential provided by the exploitation of available larger
RS datasets, and if so, how? (ii) Can the usage of dedicated resources on HPC systems
enable training of DL models for EO applications at scale? (iii) How can results obtained
using such methods be validated?

The questions above inspired the formulation of the main thesis objectives (TOs) that
guided the realization of the research project:

o« TO 1: Achieve near-linear scalability for DL models applied to RS data on HPC
systems, utilizing distributed deep learning (DDL) frameworks.

o TO 2: Extract valuable information from complex RS datasets by utilizing scalable
and parallel methods on HPC systems, with the objective of maximizing efficiency
in large-scale EO applications.

e TO 3: Demonstrate the effectiveness of classical ML methods in addressing chal-
lenging applications in RS, and to provide examples of how classical data science
methods can improve performance evaluation by providing validation and clear vi-
sualization of results.

o TO 4: Harness multi-source data to densify time series (TS) of RS measurements
through harmonization and gain a deeper understanding of complex relationships
among sources for more accurate insights.

To a large extent, TO 1, TO 2 and TO 3 were addressed in parallel since the need for
utilization of DL models requires the exploitation of large datasets. Since the efficient
training of such models is computationally demanding, dedicated HPC resources were
also used, utilizing tools inherited from classical ML to validate the results. TO 4 is
part of an additional effort undertaken to increase the amount of informative data to be
fed into ML /DL models. An abstraction of the methodological approach is depicted in
Fig. 1.1 following the Business Process Modeling Notation (BPMN) notation [29], which
clearly shows how the research activities to address the TOs were carried out. BPMN is a
graphical representation technique that illustrates a complete sequence of planned business
activities from start to finish. It plays a crucial role in Business Process Management by
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visually depicting the various steps and information flows required to accomplish a process.
The bottom layer, i.e., the foundation on which the work of the thesis is based, entails the
set of technologies used as building blocks to develop scalable EO applications. To fully
extract the information from the large volume of data acquired by RS missions (TO 2),
the second layer relies on the underlying solutions from the bottom layer. Training DL
models on benchmarking datasets such as BigEarthNet [95, 94] utilizing DDL algorithms
on HPC systems was used to accelerate the analysis of various experimental set-ups for
a variety of tasks in a shorter time. On top of the second layer, the third layer covers
the activities to tackle the TO 3. Classical ML approaches validated the experimental
results, providing a better understanding of the outcomes. The fourth layer concerns the
research activities that utilize multi-source data to densify the TS of RS data. These
activities were not performed throughout the entire project of the thesis, differently from
those related to the first three layers. The fourth layer was thought of as a supplement
to the existing applications.

1.3. Outline

This thesis was composed in a cumulative style. The significant findings are therefore
presented in the form of peer-reviewed conference and journal publications and pending
submissions, which are in Appendix A. Publications to which the thesis author only con-
tributed to a lesser extent or are not directly addressing the TOs are deliberately excluded.
For a complete list of all publications, however, please refer to both the List of Publica-
tions and Additional Papers. Appendix B lists the open-source code repositories the
author contributed to during the thesis project.

1.3.1. Covering Paper

Chapter 1 — Introduction begins with Sect. 1.1 describes the motivation for this
research project. The formulation of the TOs is presented in Sect. 1.2.

Chapter 2 — Background intends to familiarize the reader with basic concepts of RS,
DL and HPC.

Chapter 3 — Related Work provides a review of SotA methods related to the work
performed for this research project.

Chapter 4 — Summary of Papers and Contributions summarizes and explains the
main contributions of the papers included in Appendix A.

Chapter 5 — Conclusions summarizes the thesis with final considerations on the work
carried out during the project and presents perspectives for future research opportunities.
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1.3.2. Appended Papers

PAPER 1

R. Sedona, G. Cavallaro, J. Jitsev, A. Strube, M. Riedel, and J. A. Benediktsson, “Re-
mote Sensing Big Data Classification with High Performance Distributed Deep Learning”,
Remote Sensing (MDPI), vol. 11, no. 24: 3056, 2019, https://doi.org/10.3390/rs11
243056.

PAPER 11

R. Sedona, L. Hoffmann, R. Spang, G. Cavallaro, S. Griessbach, M. Hopfner, M. Book,
and M. Riedel, “Exploration of Machine Learning Methods for the Classification of In-
frared Limb Spectra of Polar Stratospheric Clouds”, Atmospheric Measurement Tech-
niques (Copernicus), vol. 13, no. 7, pp. 3661-3682, 2020. https://doi.org/10.5194/
amt-13-3661-2020.

PAPER III

R. Sedona, G. Cavallaro, M. Riedel and M. Book, “Enhancing Large Batch Size Training of
Deep Models for Remote Sensing Applications”, in Proceedings of the IEEE International
Geoscience and Remote Sensing Symposium (IGARSS), pp. 1583-1586, 2021, https:
//doi.org/10.1109/IGARSS47720.2021.9555136.

PAPER IV

R. Sedona, C. Paris, G. Cavallaro, L. Bruzzone and M. Riedel, “A High-Performance
Multispectral Adaptation GAN for Harmonizing Dense Time Series of Landsat-8 and
Sentinel-2 Images”, in IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, vol. 14, pp. 10134-10146, 2021, https://doi.org/10.1109/JSTA
RS.2021.3115604.

PAPER V

R. Sedona, C. Paris, L. Tian, M. Riedel and G. Cavallaro, “An Automatic Approach for
the Production of a Time Series of Consistent Land-Cover Maps Based on Long-Short
Term Memory”, in Proceedings of the IEEE International Geoscience and Remote Sensing
Symposium (IGARSS), pp. 203-206, 2022, https://doi.org/10.1109/IGARSS46834.
2022.9883655.

PAPER VI
R. Sedona, C. Paris, J. Ebert, M. Riedel, G. Cavallaro, “Toward the Production of Spa-

tiotemporally Consistent Annual Land Cover Maps using Sentinel-2 Time Series”, IEEE
Geoscience and Remote Sensing Letters vol. 20, pp. 1-5, 2023, https://doi.org/10.1
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1.4. Contribution

The primary contributions of this thesis are presented in this section. Table 1.1 provides
an overview of the relationship between the TOs and papers (using the vocabulary pre-
sented in the List of Publications). Three of the publications, namely Paper I, V, and VI,
present various use cases for LC classification. While they utilize different DL models,
they have in common the adoption of data parallelism techniques for speeding up the
training. In Paper I, the dataset for RS BigEarthNet [94] was used to reduce the training
of a ResNet50 convolutional neural network (CNN) from approximately 38 hours using 1
GPUs to roughly 25 minutes using up to 96 GPUs. This was accomplished through efforts
by the author to investigate available solutions and design an experimental set-up. After
the selection of suitable strategies and their combination to address the problem of large
global batch size, which causes increased model instability with severe consequences for
model convergence, the author also contributed to the deployment of this approach and
its benchmarking on HPC systems, achieving near linear scalability. For Paper V and
Paper VI, an entire modular framework [73] for data query, download, and pre-processing
was ported to HPC systems. This enabled flexible utilization of TS acquired by the S2
constellation. The first contribution of the author in Paper V was the implementation
of a method based on random forest (RF) to retrieve reliable multi-temporal training
sets, which were fed into the DL models. long short-term memory (LSTM) and Trans-
formers were adopted to exploit the temporal dynamics of the input signal to enhance
the consistency of the output multi-year LC maps. Additionally, in Paper VI, the au-
thor implemented modifications to the baseline Transformer model to retrieve an output
with information at a finer temporal resolution (i.e., updating the LC map at each new
observation), which was then analyzed and aggregated in post-processing to provide the
user with a more informative LC map. In Paper III, the beneficial effects of utilizing a
more advanced optimizer, developed explicitly for large batch sizes, were demonstrated
on a RS dataset. The effort of the author in conceiving an experimental set-up with
large batch size training for EO applications was beneficial to establish advantages and
limitations of standard and specific optimization schema and laid the groundwork for
further studies on hyperparameter tuning and model optimization in a scalable setting
(not within the scope of this thesis but part of the Additional Papers). In Paper II, the
author proposed the utilization of ML methods in the case study of the classification of
limb spectra acquired by the Michelson Interferometer for Passive Atmospheric Sound-
ing (MIPAS) for the detection and prediction of polar stratospheric cloud (PSC) types.
The author also investigated and suggested adopting tools for visualization and validation
of the obtained results, which were used to demonstrate that the proposed methodology is
physically sound, consistent with domain experts’ knowledge, and can provide additional
information as compared to SotA approaches. Finally, in Paper IV, the author adapted
a generative adversarial network (GAN), which was used to successfully densify a TS of
RS data and increase the accuracy in an LC classification task. Based on the expertise


https://doi.org/10.1109/LGRS.2023.3329428
https://doi.org/10.1109/LGRS.2023.3329428
https://doi.org/10.1109/LGRS.2023.3329428
https://doi.org/10.1109/LGRS.2023.3329428

1.4. CONTRIBUTION

paper
Paper I | Paper IT | Paper III | Paper IV | Paper V | Paper VI
TO
TO 1 X X X X X
TO 2 b b X X X
TO 3 X X X X X X
TO 4 X

Table 1.1: Relationship between TOs and papers.

acquired in previous works, the author contributed to parallelizing the training of the DL
model. For a more detailed discussion of the contributions of each publication, please
refer to Chapter 4.
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2. Background

2.1. Remote Sensing

RS is the science of collecting information about an object at a distance [72]. Sensors
used for EO applications measure the radiation that is backscattered by the object under
analysis. The sensor is a device that, through the measurement of electromagnetic (EM)
energy, can provide information on the features of the studied object. Sensors used for EO
applications are often mounted on board satellites or aircraft. A top-level categorization of
RS sensors can be made between passive and active ones. Passive sensors detect radiation
emitted or reflected by an object under study. For example, the passive sensor operating
at visible and infrared wavelengths measures the sunlight reflected by the Earth’s surface,
as illustrated in Fig. 2.1. Planck’s radiation law describes the EM radiation emitted
by physical bodies per wavelength depending on the body’s temperature. An example
of a sensor that measures EM energy emitted by the body under study is the passive
microwave radiometer, which measures emitted radiation of the Earth’s surface and is used
in applications such as soil moisture monitoring and snow and ice detection [98]. On the
other hand, active sensors utilize an active stimulus to illuminate the object and measure
the amount of backscattered energy. An example of an active sensor is a laser altimeter, a
device that emits a laser pulse toward the Earth’s surface and computes the time it takes
for the beam to reflect from the surface and return to the sensor [87]. The performance
of passive sensors operating at visible wavelengths is strongly affected by the weather and
illumination conditions. Passive sensors operating in the infrared and microwave spectra
can provide additional information for a variety of applications, e.g, the estimation of snow
depth, observation of the sea surface, and rainfall retrieval [13, 31, 92]. Active sensors such
as laser and radar devices are widely used for EO applications. While some active sensors,
such as synthetic aperture radars (SARs), measure the magnitude and phase change of
EM radiation, others, such as a laser rangefinder or radar altimeter, only measure elapsed
time between sending and receiving energy signals [98, 28, 27]. Reflectance of the EM
energy is usually measured not only at a single wavelength but over a spectral range,
or bandwidth. Spectral range or wavelength range is an interval of the EM spectrum
used to measure average reflectance. Multispectral scanners, such as the Multispectral
Instrument (MSI) mounted on-board satellites of the Sentinel-2 constellation, measure
the reflectance at multiple wavelengths, while hyperspectral sensors can acquire up to
hundreds of narrow bands [10].
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Figure 2.1: Illustration of visible and infrared passive RS sensor scheme [98].

2.2. High Performance Computing

In this section, a background on HPC is provided to introduce the main technological
aspects of supercomputers in Subsection 2.2.1 and to explain the distinction between
shared and distributed memory systems in Subsection 2.2.2.

2.2.1. High Performance Computing Systems

In the modern HPC, supercomputers are based on a multitude of hardware designs,
architectures, and platforms [75]. Heterogeneous systems equipped with a variety of
specialized hardware are becoming more common. Partitions of an HPC system can
be dedicated to specific tasks, as in the case of GPUs for DL applications [19]. The
powerful resources provided by an HPC system and the advances in parallel computing
allow a faster time-to-solution for highly complex problems in a wide range of fields, from
computational fluid dynamics to health care. The power of HPC systems is typically
measured in floating point operations per second (FLOPS). We are now entering the era of
exascale as the first supercomputer Frontier set the new record at 1,102.00 PetaFLOPS in
November 2022 !. Nowadays, not only specialized research centers provide HPC systems,
but more and more are hosted on the cloud. Parallel computing executes multiple tasks
concurrently on various servers or computer processors. Computation can then be carried
out in parallel on dedicated resources, using multi- and many-core processors. The core
elements of any HPC system are called nodes, which are computers equipped with high-
performance multi-core processors or accelerators, depending on the intended application.
Dedicated high-throughput, low-latency storage and memory devices enable high 1/0
performances. A key role is played by high-performance remote direct memory access
(RDMA) technologies, such as Infiniband [44], that allow the interconnection of multiple
nodes at high-speed [106].

Ihttps://www.top500.0rg/lists/top500/2022/11/
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Figure 2.2: Representation of (a) shared memory and (b) distributed memory systems
[71].
2.2.2. Shared and Distributed Systems

multiple instruction multiple data (MIMD) computers, in which the instructions can op-
erate on different data, can be categorized into shared memory and distributed memory
systems [6]. Shared memory systems can access only a single memory address space
(shown in Fig. 2.2(a)), while the memory space of distributed memory systems are dis-
tributed among multiple nodes (shown in Fig. 2.2(b)). In a distributed memory system,
the processor operating on one node cannot directly access the memory address of a pro-
cessor on another node. Therefore, an exchange of messages between the two nodes is
required. Since the rapid exchange of messages is of utmost importance in HPC clus-
ters, the availability of high-throughput technology for the interconnection of the nodes
is essential.

The most frequently used APIs for parallel programming on shared memory systems are
Pthreads, which is low-level and allows fine-grained control over thread management,
and OpenMP, which allows higher-level programming [71]. Message-Passing Interface
(MPI) is a standard that defines specifications for exchanging messages among processors
on distributed memory systems [66, 71]. MPI allows the programmer to implement a
variety of topologies, among which is the ring, a concept upon which the Ring-AllReduce
algorithm is based (see also Subsection 3.2.5).

2.2.3. Hierarchical Data Format

Hierarchical Data Format (HDF) is a collection of file formats intended to manage and
store large data sets [99]. An HDFb5 information set (infoset) serves as a container for
annotated associations of array variables, groups, and types [30]. HDF datasets are
array variables that hold data elements arranged logically as a multidimensional array.
An HDF dataspace records the dataset’s rank (number of dimensions) and current and
maximum extent (number of elements) in the corresponding dimensions. An HDF array
database lays out array elements as a single sequence. In contrast, for small HDF datasets
(totaling less than 64 KB), all array elements are stored in the array variable’s metadata
or header (HDF datatype, dataspace, and other metadata) for easy retrieval. Adopting a
storage particular layout strategy provides additional capabilities and potentially increases
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performance for certain operations. For example, an HDF dataset with a contiguous
layout strategy guarantees nearly constant access time to any element in the array, with
zero overhead for locating elements in the dataset. For HDF datasets using a chunked
layout strategy, HDF enables unrestricted extents for none, some, or all dimensions. HDF
groups are similar to directories in a file system. An HDF group represents an explicit
connection among zero or more HDF information items, such as HDF datasets, HDF
groups, and HDF datatype objects. HDF data types provide a type system that offers
nearly unlimited flexibility. The HDF array variable type (non-scalar) has two primary
components: an HDF dataspace describing its shape and an HDF datatype describing
the type of its data elements. Currently, ten families or categories of HDF datatypes are
supported: integer, floating-point, string, bit field, opaque, compound, reference, enum,
variable-length sequence, and array. Mostly, the type instances of these families are as
their name implies. Several APIs exist to utilize HDFs with a variety of programming
languages. h5py is a Python library that enables storing and manipulating very large
amounts of data, which is useful in applications such as DL [20].

2.3. Deep Learning

DL is a subset of machine learning based on artificial neural networks (ANNs) with
multiple layers that can model complex patterns based on the training data [55]. Inspired
by the functional behavior of the human brain [65], ANNs is composed of stacks of layers.
DL models consist of an input layer, an output layer, and at least one hidden layer in
between. The interconnections among the neurons are associated with weights, and each
neuron has an activation function.

An objective (or loss) function chosen depending on the task (e.g., the distance between
predicted and real targets in a supervised classification setting) measures the discrepancy
between the generated output and the desired target. Optimizing the DL model is per-
formed by computing the gradient of the objective function with the backpropagation
algorithm. Using the chain rule, the gradients of the loss based on the weights are calcu-
lated backward from the top of the network to the bottom. The weights of the model are
then updated according to the utilized algorithm [35].

CNNs are primarily used in computer vision and image classification applications to de-
tect features and patterns in images and to enable tasks such as object recognition [51],
while recurrent neural networks (RNNs) work with sequential or time-series data and are
therefore commonly used in natural language and speech recognition applications.
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DL models require training using large amounts of data to learn meaningful features.
Therefore, the DL models need dedicated pipelines for extracting and handling such data,
which can severely impact their performances HPC provide dedicated hardware accelera-
tors to deploy and scale-up processing workflows efficiently and significantly enhance their
computational performance (in terms of FLOPS) [63]. HPC systems are on the verge of
entering the new era of exascale computing in the coming years as the most powerful
computers have already reached the threshold of ExaFLOPS. HPC systems can help
address challenging problems in applications from climatology to astrophysics, medicine,
and industry [109] through massively scalable algorithms. The increase in the amount of
RS data requires higher storage capacities. In addition, open challenges remain, such as
the fact that near real-time EO applications need to be deployed on parallelized clusters.
In the following sections, the current research that happens at the intersection between
advances in the RS research for LC classification and DDL on HPC systems is discussed.

3.1. Land Cover

LC maps describe the physical properties of the coverage of Earth’s surface, in which
the areas that share similar semantic meaning are grouped into classes. In contrast,
land usage (LU) provides information on how the surface is used and which activities
are performed on the ground. Therefore, LU maps strongly depend on the interaction
between humans and the environment [52].

3.1.1. Land Cover Classification

The availability of updated LC classification maps is fundamental to a wide range of
applications since it enables the study of the dynamics of phenomena that occur on the
Earth’s surface. Field surveys and in-situ observations have been long complemented by
automated schemes that exploit satellite imagery [97]. Frameworks that process large
volumes of RS data need dedicated resources. In [11], the Google Earth Engine was used
to access and process Sentinel-2 data and train a CNN to update the LC maps near real-
time. A crucial element to fully exploit LC maps and extract information on the changes
on the ground is their spatio-temporal consistency, i.e., observed changes among different

13
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Figure 3.1: LC map generated by WorldCover for the Reykjavik area’.

LC maps should be attributed to real change only, not to spurious change. [104] proposed
a method to map global L.C classes using multiyear TS from Moderate Resolution Imaging
Spectroradiometer (MODIS) data, including data from the previous to ensure consistency
of the new product. In [2], a hidden Markov models (HMM) was used to generate TSs
of LC maps while reducing the number of unreal changes in the output products. The
trade-off between reducing the occurrence of spurious changes in inter-annual LC maps
and detecting real change is of the most significant importance when analyzing long T'S
of data. The adoption of SotA DL methods can further help us to increase the reliability
of the LC classification maps, detecting the coverage on the ground and modeling the
distinct components of the signals in the TS of LC products, allowing monitoring of
ongoing environmental processes (e.g., desertification, urbanization, deforestation).

3.2. Deep Learning

A significant part of the effort regarding DL methods in this thesis was devoted to investi-
gating the exploitation of spatial and temporal information provided by satellite imagery.
At first, the utilization of CNN models was studied for the patch-based classification of
LC classes (details on ResNet in Subsection 3.2.1). Secondly, the utilization of models
capable of exploiting the temporal information of long TS of RS data was investigated
(presented in Subsection 3.2.2 and 3.2.3).

3.2.1. ResNet

The ResNet is a deep residual CNN architecture developed by [41] to overcome difficulties
in training networks with a very large number of layers (>20, up to 1000 layers, and more
possible). AlexNet, a CNN model with eight layers [51], VGG with 16 layers [91], and

'https://viewer.esa-worldcover.org/worldcover/
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Figure 3.2: Depiction of skip connection [41].

GoogleNet with 22 layers [96] were the first DL models to consistently outperform tradi-
tional ML models for imaging tasks. An increasing number of processing layers further
increased accuracy performance on ImageNet challenges regarding class recognition rates
(the ImageNet-1k challenge has 1000 different object classes that need to be successfully
learned during the training on 1.2 Million images [51, 22]). However, simply increasing
the number of layers further by stacking more convolutional and other layers (pooling,
etc) on top of each other was not functionally successful. The training of very deep net-
works resulted in worse accuracy, contrary to expectations set by previous results. It
has been noted that the degradation of the training accuracy may be partly caused by a
phenomenon known as vanishing (or exploding) gradients. ResNet architecture has been
designed to overcome this issue by introducing residual blocks featuring skip connections.
These connections implemented an explicit identity mapping for each successor layer in
a deep network in addition to the learned operations that were applied to the input be-
fore it reached the next layer [41]. The network was forced to learn residual mappings
corresponding to useful transformations and feature extraction on the image input. At
the same time, loss gradients could still low undisturbed during the backward pass via
available skip connections through the whole depth of the network. Instead of directly
fitting the underlying mapping H (z), the residual mapping F(z) := H(x) — x is learned
[41]. In ResNet, the skip connections are implemented as identity mappings, resulting in
the formulation F(z) + = shown in Fig. 3.2. Various ResNet networks were shown to
train successfully with several layers that were impossible to handle before while using
a smaller number of parameters than previous, less deep architectures (e.g., VGG or In-
ception networks), allowing for faster training. ResNet-50 (where the number indicates
the number of layers) has since established a strong baseline in terms of accuracy, repre-
senting a good trade-off between accuracy, depth, and number of parameters while being
very suitable for parallelized, distributed training. Since it remains the strong baseline
for object recognition tasks and is also widely used in scenarios for transfer learning ([23,
80, 50]), the ResNet-50 architecture was adopted for the work described in Sect. 4.1.
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3.2.2. Long Short-Term Memory

LSTM are a type of RNN. The RNN dynamics can be described using deterministic
transitions from previous to current hidden states:

RNN: At AL — Rl

The central role of the LSTM model is held by the “cell state”, a memory cell that
maintains its state over time. The “cell state” is the horizontal line that passes through
the top of the diagram below, and it can be visualized as a conveyor belt through which
information remains unchanged [42].

Let hL € R™ be a hidden state in layer [ in timestep t. Moreover, let T}, ,,, : R* — R™ be
an affine transform (Waz + b for some W and b). Let ® be element-wise multiplication
and h? be an input word vector at timestep k. The activations hZ are used to predict y,
where L is the number of layers in the deep LSTM.

For classical RNNs, this function is given by:

hl = f(Tpn hi™t + T, bt ), where f € {sigm, tanh}

fo = a(Wilhi—1, 2] + by)

(3
iy = o(Wilhi—1, ) + b;) (3
C, = tanh(Welhe_1, 2] + be) (3.
Cr=f0C 1 +i0C (3
or = o(Wolhu_1, 2] + by) (3

hy = oy ® tanh(Cy) (

In these equations, sigm and tanh are applied element-wise. Figure 3.3 illustrates the
LSTM equations.

Lyu, Lu, and Mou [60]. LSTM networks trained on TS of S2 data outperform models
trained on a single acquisition, i.e., a SVM and a CNN for LC classification tasks since a
multi-temporal approach can learn the temporal pattern that is peculiar to LC classes [83].

3.2.3. Transformers

The attention function can be described as mapping a query and a set of key-value pairs
to an output, where the query, key, value, and output are all vectors. The output is
calculated as the weighted sum of the values, where the weight assigned to each value is
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Figure 3.3: Depiction of cell of the LSTM adapted from [32].

calculated using the query’s compatibility function with the corresponding key [102]. The
Scaled Dot-Product Attention is defined as:

Attention(Q, K, V) = softma (QKT)V (3.7)
s Idy = XN —F—— :
Vdy,

where /d}, is the dimension of the key vector k and query vector ¢ .

Multihead attention is defined as:
MultiHead(Q, K, V) = Concat(heady, ..., head;, ) W° (3.8)

where:

head; = Attention(QW<, KWX vVvY) (3.9)

RuBwurm et al. [84] utilized a Transformer model alongside other methods, including RF
and LSTM, for the supervised classification of field crops using TS of S2 data. In [14] a
Transformer is used to refine the spatial features extracted by a CNN to enhance perfor-
mances on change detection tasks. Visual Transformers [24], i.e., models that replace the
convolutional layers of CNNs with attention layers, have also been adopted in the context
of RS, matching performances of SotA methods based on CNNs [8].

3.2.4. Pix2pix

Pix2pix [81] is a conditional GAN, in that the two models that compose it, the generator
and the discriminator, play one against the other. In the adversarial game, the generator
tries to fool the discriminator, while the discriminator aims to maximize the probability of
correctly detecting fake samples [36]. In a conditional GAN, additional information is fed
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Figure 3.4: (a) Transformer architecture, (b) attention mechanism [102].

into the generator to direct the data generation process [67]. The formula that describes
Pix2pix is:
mGin max V(G,D) =Exy[log D(X,Y)]+

(3.10)
—f-]EX,z[lOg (1 - D(X7 G(X7 Z)))]:

where E is the expected value, X and Y are the source and target images (having the
same resolution), z is the input noise of the generator, and V (G, D) is the value function.
In particular, the generator G' and the discriminator D of pix2pix are a U-net encoder-
decoder architecture with skip connections and a PatchGAN, respectively. The first part
contains several downsampling convolution layers in the U-net encoder-decoder generator
[81]. The second part is a mirrored version of the first, with a transposed convolution
for upsampling the data, which flows from the bottom to the top of the U-net through a
bottleneck. The skip connections, which link the inner layers of the encoder and decoder,
allow low-level information to pass directly from the first to the last layers of the U-
net. The PatchGAN discriminator is designed to capture the patterns at the scale of the
input image. Its objective is to classify N x N patches of G(X, z) (the synthetic input
patch created by the generator) and Y (the target patch) as fake or true, encouraging the
generator to produce more accurate and realistic outputs. Pix2pix has been used in the
domain adaptation tasks with RS data. Ao et al. [3] presented an approach to translate
SAR imagery acquired by Sentinel-1 into the target domain of TerraSAR-X by adopting
spatial Gram matrices to safeguard the structural information. In Lebedev et al. [54], an
optimized version of pix2pix was designed to improve change detection compared to the
original architecture.

3.2.5. Distributed Deep Learning

In recent years, the scale of distributed parallel training and the size of DL models have
grown exponentially. The notorious Generative Pre-trained Transformer (GPT)-3 features
175 billion parameters and 96 layers of attention, using 499 billion tokens [12]. Using
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frameworks to parallelize the training is essential for large DL models and even more
crucial for the very large ones such as GPT-3 or DALL-E [79]. There are mainly two types
of distributed parallel training: data parallelism and model parallelism [9]. Despite the
increasing availability of dedicated efficient GPUs such as the NVidia A100 or the AMD
MI250X, successfully training and deploying large DL models still poses several challenges.
To overcome these limitations imposed by computationally expensive training, the DL
community envisages a variety of methods that enable distributed training across multiple
computing nodes of clusters or HPC machines equipped with accelerators like NVIDIA
Collective Communication Library (NCCL) or highly specialized Tensor Processing Units
(TPUs) [63, 111]. Using these methods, it became possible to perform distributed training
of large network models without losing task performance and drastically reduce the time
necessary for complete training. For example, the time required to fully train the object
recognition DL model on ImageNet-1k (1.2 million images, about 100 epochs needed for
convergence training) was reduced by several orders of magnitude, from days to minutes
[109, 107]. Horovod is a popular software library that provides a convenient way to
run training and supports TensorFlow and PyTorch [88]. By using Horovod, just a few
modifications to the standard code used for rapid prototyping of a single-node model are
needed to adapt it to a distributed execution across multiple nodes. To enable distributed
training, Horovod adapts the parallel data schema. In data parallelism, it is assumed that
a trained network model can fit in the memory of a GPU device. Multiple workers can be
instantiated during training, each taking up one available GPU. Each worker contains a
copy of the network that will be trained and receives a separate chunk of data for training.
Each iteration updates the model, and the global batch is split into different local batches
assigned to each worker. Working on its subset of the data, each worker performs a
forward step to calculate the network activation and local loss based on its current input
and a backward step to calculate the local gradient. To synchronize all network models
among workers, Horovod uses a decentralized and synchronous update strategy based on
Ring-AllReduce [88] operations, where the local gradients of all workers are collected and
averaged. The global gradient computed in this way is used to update the weights of
each local replica of the DL model. This contrasts centralized update strategies utilizing
a parameter server (PS) to communicate model parameters to the workers. Machines
hosted at Jiilich Supercomputing Centre (JSC) do not support intercommunication among
nodes using TCP/IP, which is required for the central PS. The distributed training
approach employed by Horovod is known for its ability to provide high bandwidth and low
latency communication among computing nodes. This is achieved through the use of MPI
and NCCL libraries, which enable efficient interconnectivity among nodes. Decentralized
updates better use the network topologies that connect the respective machines and use a
more efficient communication strategy to perform distributed training. The decentralized
approach can provide greater fault tolerance than strategies based on a central PS by not
having a weak point in the communication chain, i.e., if the PS crashes, it is difficult to
continue training. When a node fails, communication in a decentralized approach can
continually be reconfigured without affecting training because all other workers have a
complete copy of the model. Therefore, decentralized updates are a viable option for
less reliable cluster systems. Centralized schemes can also be a successful option for
robust HPC systems where grade failure is rare. Still, the communication bottleneck
poses severe issues when scaling on many nodes [63]. Using a decentralized scheme for
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the gradient exchange and weights update, such as the one implemented by Horovod,
is a practical choice for simplicity and speed for distributed training on HPC. As a
high-level framework at the top of DL libraries, Horovod uses well-established Compute
Unified Device Architecture (CUDA) MPI processes and relies on the NCCL library? to
implement robust and efficient communication among workers. The choice of Horovod
as a library for effective distributed training was also motivated by the ease, clarity of
structure, and transparency of the required code changes. A similar strategy can now
also be implemented directly in TensorFlow® and PyTorch?.

Large Batch Size Training

Besides the problems related to efficient intercommunication among nodes, the issue of
degradation of the generalization capabilities of the model needs to be addressed in a
large effective (global) batch size setting. Most optimization methods used to minimize
the loss during training are derived from stochastic gradient descent (SGD). If training
is deployed on a significant number of workers, the effective size of the global batch size
increases. Therefore, the optimization handles larger batch sizes than those used to train
the DL model on a single worker. Large batches (for ImageNet, on the order of a few
thousand images per batch versus the standard batch size of several hundred for single-
node training) cause significant performance degradation in terms of accuracy if used
without additional countermeasures [37]. This may be partly due to the nature of SGD,
which requires a certain amount of noise generated by the relatively small batch sizes
used for update steps. Various solutions to ensure a similar level of performance with
increasingly large effective batch sizes in a distributed learning setting are now available.
The most utilized solutions consist of a combination of techniques such as setting up
a learning rate scheduler that uses warm-up, scaling the learning rate by the number
of workers, and scaling it down by a factor after a certain number of epochs [56, 109,
37]. More sophisticated strategies for handling very large batch sizes (e.g., for ImageNet,
greater than 2'3 = 8192) use adaptive learning rates adjusted based on the depth of
the DL model, the magnitude of computed gradients, and training progression. This
approach is used in Layer-wise Adaptive Rate Scaling (LARS), an adaptive optimizer
designed explicitly for large-scale distributed training [110].

Distributed Deep Learning in Remote Sensing

The “big data” paradigm has been known in RS for over a decade. RS techniques provide
large amounts of data from various sources daily at various spectral, spatial, and temporal
resolutions. Consequently, the characteristic 3 Vs of “big data” (velocity, volume, variety

’https://developer.nvidia.com/nccl
Shttps://www.tensorflow.org/api_docs/python/tf/distribute/MultiWorkerMirroredStrategy
“https://pytorch.org/docs/stable/notes/ddp.html
Shttps://www.uber.com/en-IT/blog/horovod/
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[53]) are not alien to RS [15]. HPC technologies have been used to enable computation of
computationally demanding RS applications [76, 77]. [40] provides an overview of recent
advances in the usage of cloud computing and HPC for RS data applications based on DL.
In [5], a model parallelism approach is adopted to reduce the amount of communication
with the central PS. The methodology is compared with a data parallelism approach for
a LC classification task.

3.3. Harmonization

The continual monitoring of the surface of our planet is of utmost importance, with space
agencies operating missions towards that goal. A variety of sensors (optical, radar, lidar,
etc.) are used onboard satellites, and the increased temporal coverage provided by their
combination (an example is shown in Fig. 3.7) justifies the concrete need for data fusion.
Data fusion includes tools and algorithms to utilize data originating from various sources,
aiming to obtain information of greater quality [103]. [18]. The Harmonized Landsat
Sentinel-2 (HLS) utilizes a series of processing blocks to atmospherically correct and co-
register the L8 and S2 data and finally perform band-pass filtering to harmonize the
radiometric properties of the MSI (S2) and the Operational Land Imager (OLI) sensors
(L8) [18]. Sen2Like [85] follows a similar approach for spatial co-registration and spectral
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Figure 3.7: Rewvisit time decreases combining multiple satellites [18].

adjustment, for which knowledge of the calibration of the sensors is critical. Relying on
the HLS framework, [49] goes in the direction of providing harmonized, inter-operable,
analysis-ready TS of RS data, utilizing imagery acquired by S2, L8 and PlanetScope ©.
Through a case study of crop monitoring, they provided additional insights into the
potential benefits of near-daily observations.

Shttps://www.planet.com/products/planet-imagery/
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4. Summary of Papers and
Contributions

In this Chapter, the publications enumerated in the List of Publications and included in
the thesis as Appendix are introduced, and the respective contributions are highlighted.

4.1. PAPER |

R. Sedona, G. Cavallaro, J. Jitsev, A. Strube, M. Riedel, and J. A. Benediktsson, “Re-
mote Sensing Big Data Classification with High Performance Distributed Deep Learning”,
Remote Sensing (MDPI), vol. 11, no. 24: 3056, 2019, https://doi.org/10.3390/rs11
243056.

This publication contributes to the TO 1 in that it adopts a strategy for DDL based on
the utilization of Horovod on top of TensorFlow to train a multi-spectral CNN. It fulfills
TO 2 since the DL models are fed with a customized parallel loader for large data from
HDEF5 files. Performances were evaluated using classical ML metrics, serving TO 3.

Here, the author effectively trained a multi-spectral CNNs on the Jilich Research on
Exascale Cluster Architectures (JURECA) and Jiilich Wizard for European Leadership
Science (JUWELS) HPC systems hosted at the JSC on the dedicated partitions equipped
with GPUs. The chosen dataset was a large benchmarking RS archive, BigEarthNet! [95],
that posed several challenges, namely:

o Large number of patches (~500.000), originally available in data format not opti-
mized for usage on HPC systems.

o Multi-label classification problem, i.e., more than one label assigned to each patch.

The experimental set-up consisted of a patch-based classification task based on LC classes.
The author conducted a survey of the existing frameworks for DDL and decided to use
Horovod [88]. This framework was chosen because it enables efficient scaling on HPC
machines with a significant number of GPUs through the Ring-AllReduce algorithm [74].
The main technical difficulty was posed by the large size of the original dataset, which had

'https://bigearth.net/
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Figure 4.1: Time per epoch during training with respect to the number of nodes.

to be converted to a file format suitable for utilization on HPC and the implementation
of a custom parallel data loader to streamline the process from the retrieval of data from
disk to feeding it into the model. To allow the model to output multiple labels per patch,
the softmax activation function of the original classification layer of the ResNet50 was
substituted with a sigmoid. A combination of strategies was adopted to (i) stabilize the
training of the ResNet50 in a large batch size setting (batch_size >= 8192 samples) and
(ii) maintain performances in terms of test accuracy. A gradual warm-up was employed
alongside a heuristic for the scaling of the learning rate with respect to the number of
the utilized GPUs. A step-wise decay policy was applied to reduce the learning rate and
stabilize the training at later stages. In this work, the main scientific contributions were
to:

o Effectively train a ResNet-50 CNN model on BigEarthNet, reducing training insta-
bilities and maintaining an acceptable generalization capability of the model on test
data.

o Perform near-linear speed-up of the training on up to 96 GPUs on multiple HPC
systems for benchmarking, reducing the total training time from ~38 hours to ~25
minutes (epoch time is shown in Fig. 4.1).

4.2. PAPER Il

R. Sedona, L. Hoffmann, R. Spang, G. Cavallaro, S. Griessbach, M. Hopfner, M. Book,
and M. Riedel, “Exploration of Machine Learning Methods for the Classification of In-
frared Limb Spectra of Polar Stratospheric Clouds”, Atmospheric Measurement Tech-
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niques (Copernicus), vol. 13, no. 7, pp. 3661-3682, 2020. https://doi.org/10.5194/
amt-13-3661-2020.

In this publication, a data pre-processing workflow was implemented to extract informative
features from the original dataset, serving partially to TO 2. TO 3 is addressed by
comparing various classical ML methods with well established methods based on domain
knowledge.

The potential of applying ML methods to classify polar stratospheric clouds (PSCs) ob-
served by infrared limb sounders was explored in this work. Two datasets were considered
in this study, the MIPAS real data and the Cloud Scenario Database (CSDB) synthetic
data. The first task was to access, convert, and process T'Ss of RS data in a format suitable
for utilization with ML methods. An initial analysis was performed to assess the essential
characteristics of the CSDB and then used ML methods to reduce the dimensionality of
the feature space. Samples from the real MIPAS dataset were finally classified, comparing
the performances of RF and SVM with the well-established Bayesian method [93]. The
principal component analysis (PCA) was utilized to reduce the feature space’s dimen-
sionality and evaluate how well the principal components could be distinguished. Feature
importance matrices were used to extract which characteristics of the signals contributed
the most to the classification output and compared with physical knowledge to demystify
the “black box” represented by ML models [82].

The main scientific challenges were to:

o Extract information from real and synthetic datasets by adopting tools from classical
ML to classify PSC.

o Show that obtained results were physically sound through a comparison with a well-
established method (e.g., Fig. 4.2 evaluates the consistency of the SVM and the
Bayesian method).

The contributions were to prove that automatic ML methods can (i) achieve results in
line with methods based on apriori knowledge of domain experts for the task of PSC
classification and (ii) provide additional insights on the classified samples.


https://doi.org/10.5194/amt-13-3661-2020
https://doi.org/10.5194/amt-13-3661-2020

26 CHAPTER 4. SUMMARY OF PAPERS AND CONTRIBUTIONS

o 9 )
2 7 o 0 e s
100 - And A A ASy A W T
H ice
Hl nat_large
80 B sts 1
sts 2
60 - sts 3
EEl nat small
40 -
20 1
0-

. R S S
R (o MRS
o & g ‘Q\Ce BN

Figure 4.2: Agreement of results provided by the Bayesian classifier and SVM.

4.3. PAPER IlI

R. Sedona, G. Cavallaro, M. Riedel and M. Book, “Enhancing Large Batch Size Training of
Deep Models for Remote Sensing Applications”, in Proceedings of the IEEE International
Geoscience and Remote Sensing Symposium (IGARSS), pp. 1583-1586, 2021, https:
//doi.org/10.1109/IGARSS47720.2021.9555136.

The research conducted for this conference paper was intended as an extension to work
performed for Paper I to gain additional insights on promising directions towards the
adoption of algorithms designed for DDL training in a large batch size setting, using
benchmarking RS datasets, thus serving the TO 1, TO 2 and TO 3.

In the paper described in Sect. 4.1 DL models were trained with large effective batch sizes.
Since the experimental set-up based on large batch sizes posed several challenges [37], in
this work, the Layer-wise Adaptive Moments Optimizer for Batch Training (LAMB) [112]
optimizer was used to train a CNNs on HPC systems, aiming at a model with good
generalization for a classification task based on RS imagery, namely the DeepSat SAT-4
and SAT-6 datasets [7]. The importance of such studies lies in the fact that a large volume
of data needs to be utilized to monitor the dynamics of LC classes at multiple locations
on the Earth’s surface with high temporal resolution. To this end, the boost in speed-up
provided by DDL is of excellent value, with an acceleration both during the prototyping
of the models and at deployment.

The main contribution was to investigate the adoption of the LAMB optimizer on RS data
in a large effective batch size setting while also exposing its limitation. The utilization
of LAMB enabled training with a batch size of up to 65.000 samples, while the SGD
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and Adam [48] optimizers did not converge. However, this study does not address the
exploration of the sizeable hyper-parameter space of the experimental set-up (e.g., learning
rate, decay policy, momentum, etc.), which could help reach convergence and increase the
test accuracy of the model [38, 70].

4.4. PAPER IV

R. Sedona, C. Paris, G. Cavallaro, L. Bruzzone and M. Riedel, “A High-Performance
Multispectral Adaptation GAN for Harmonizing Dense Time Series of Landsat-8 and
Sentinel-2 Images”, in IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, vol. 14, pp. 10134-10146, 2021, https://doi.org/10.1109/JSTA
RS.2021.3115604.

For this research project, the author developed an approach for the utilization of T'S of RS
data based on a DL model aiming to harmonize multi-source data, optimizing it to scale
on HPC resources, serving TO 1, TO 2, TO 3 and TO 4.

This work focused on the development of a framework (depicted in Fig. 4.3) aiming
to densify TS through the harmonization of imagery acquired by S2 and L8 to produce
analysis ready data (ARD) [25], i.e., requiring no additional effort from the user (no
data filtering required, outliers already removed). A DL model based on pix2pix [45]
(introduced in Sect. 3.2.4) was developed to spectrally and spatially harmonize a subset
of the S2 and L8 data (i.e., the six overlapping bands). The generator of the model was
modified from the original U-Net encoder-decoder, which learns to generate target L8
images from input S2 images. At the same time, the discriminator aims at detecting
fake vs. real images. To increase the stability of the training, spectral normalization
layers [68] were inserted after the instance normalization in the discriminator, and the
original adversarial loss was substituted with a relativistic adversarial loss [46]. The
densified output was evaluated in a crop type classification case study and through spectral
agreement metrics. The main contributions were:

e The demonstration that an automated approach based on DL can generate ARD
competitive with those provided by physical methods, e.g. the HLS.

o The development of a method that scales efficiently on multiple GPUs.

The main limitation of this work, however, lies in the study of a single Aol due to the
technical difficulties encountered during data retrieval. Among other scientific motivations
(e.g., increase the informative content of the samples), the aforementioned technical aspect
also drove the adoption and porting of an existing framework [73], further described in
Sect. 4.5.
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Figure 4.3: Block scheme of the proposed method.

4.5. PAPER V

R. Sedona, C. Paris, L. Tian, M. Riedel and G. Cavallaro, “An Automatic Approach for
the Production of a Time Series of Consistent Land-Cover Maps Based on Long-Short
Term Memory”, in Proceedings of the IEEE International Geoscience and Remote Sensing
Symposium (IGARSS), pp. 203-206, 2022, https://doi.org/10.1109/IGARSS46834.
2022.9883655.

This conference paper contributes to TO 1 and TO 2 since DL models were trained on
multi-year RS data. A classical ML model was adopted to increase the consistency of the
input data to the DL models, relating also to TO 3.

In preparation for this work, a pre-existing framework [73] for the acquisition and process-
ing of large volumes of informative RS data was ported to HPC systems hosted at JSC.
The framework utilizes k-means clustering to retrieve the most reliable samples from the
considered tile, and stratified random sampling is performed to collect the points, cre-
ating a clean dataset [78]. Using the Sentinelsat > API, S2 images were queried from
the Copernicus Open Access Hub for the years 2018, 2019, and 2020, within the Aol of
Trentino, Italy. This area was selected because ground truth data for the validation of
the proposed approach was available due to the impact of the Vaia storm [101]. A RF
was used to classify the samples for the three years individually. New training, validation,
and test sets were collected utilizing samples associated with the same label throughout
the three years to increase the stability of the dataset. The multi-year training dataset,
consisting of ~10.000 points and 20 acquisitions per year, was then fed into a LSTM model
during training. At inference time, the matrix with the reflectances covering the Aol (to-
tal number of pixels is > 6.000.000) was used as input to predict the new LC map. The

’https://sentinelsat.readthedocs.io/en/stable/


https://doi.org/10.1109/IGARSS46834.2022.9883655
https://doi.org/10.1109/IGARSS46834.2022.9883655
https://sentinelsat.readthedocs.io/en/stable/

4.6. PAPER VI 29

paper’s main contribution lies in implementing an approach that produces a reliable and
informative multi-year training set. This was used as input data for an LSTM, showing
that a longer TS of informative data can help increase the consistency of the output LC
map, the importance of which is explained in Sect. 3.1.1.

4.6. PAPER VI

R. Sedona, C. Paris, J. Ebert, M. Riedel, G. Cavallaro, “Toward the Production of Spa-
tiotemporally Consistent Annual Land Cover Maps using Sentinel-2 Time Series”, IEEE
Geoscience and Remote Sensing Letters vol. 20, pp. 1-5, 2023, https://doi.org/10.1
109/LGRS.2023.3329428.

Since this work was designed as an extension of the previous Paper V, TO 1 and TO
2 are addressed by the utilization of an attention-based DL model that exploits multi-year
RS for increased consistency of the output LC classification maps, using classical methods
for the evaluation of the obtained results (TO 3).

Following the footsteps of Paper V, described in the previous Sect. 4.5, a scalable and
semi-automatic method was proposed to generate annual LC maps using a Transformer
model. The data were TSs of satellite imagery acquired by S2. For the tile of the Aol
covering Trentino, 15 acquisitions per year for 2018, 2019, and 2020 were downloaded.
The averaging before the final classification layer of the baseline Transformer [84] for RS
data was removed to retrieve multi-temporal attention weights and, consequently, a multi-
temporal classified output sequence. We employed a convolution of a binary intrayear LC
label sequence with a step function to detect permanent changes in the LC time series,
differentiating them from seasonal variations by assessing their stability, recurrence, and
temporal occurrence. These post-processing steps were crucial in discriminating between
stable and non-stable patterns in the output LC maps, thereby providing insight into the
spatial and temporal locations of acquisitions where abrupt changes occurred. The main
contributions are:

o The adaptation of a Transformer for EO applications to extract multi-temporal
output TS of LC to generate the stable component from the real change and spurious
change components in the output signals describing the evolution of the LC maps.

o Estimation of occurrence of real changes to provide more accurate temporal infor-
mation to the end-user on top of the updated LC map (as shown in Fig. 4.4).

This line of work allowed gaining insights into the way the attention mechanism of the
Transformer model responds to T'S of RS data, fostering further developments. (i) On
one side, the visualization of the attention weights could guide the selection of more
informative training sets, (ii) on the other side, the impact of global vs. causal attention
masks should be carefully analyzed to understand the impact of the selection of the
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Figure 4.4: Examples of multiyear maps and changes obtained for a small portion of the
considered study area for 2018-2020 using the: 1) Transformer, 2) random forest, and
3) proposed method. The Sentinel-2 images acquired in 2018-2020 are reported with the
changes reference map.

attention window on the final output.



5. Conclusions

5.1. Summary

In recent decades, EO has benefitted from increasingly large volumes of multi-source RS
data, particularly in the area of LC maps. Scientists and policymakers rely heavily on
such data to address pressing environmental issues. As the amount of data increases,
classical ML and, more recently, DL methods have been developed to extract information
from these large datasets. However, the increased size of the datasets needed to train DL
models has increased the time to deployment, which can hinder their effective utilization.
DDL on HPC systems can speed up the training of the models, reducing the time to
deployment and development. Space agencies operate a variety of missions with a variety
of sensors that can be utilized to increase the temporal resolution at which a particular
area is observed, with potential benefits in DL model accuracy.

The use of RS data and HPC systems provide excellent potential for large-scale EO
applications. Several scientific and technical challenges need to be addressed to maximize
the benefit of this potential. The main research objectives of this project are to achieve
near-linear scalability for DL models on HPC systems, extract valuable information from
complex RS datasets, demonstrate the effectiveness of classical ML methods in addressing
challenging applications, and harness multi-source data to densify T'S of RS measurements.
This research project is addressing these objectives in parallel, utilizing both DL models
and classical ML, methods while also making use of large datasets and HPC resources
to improve computational efficiency. By addressing these challenges and objectives, the
project aims to increase the amount of informative data available for DL models and
gain a deeper understanding of complex relationships among sources for more accurate
insights.

Throughout the thesis work, multiple aspects that play a crucial role in the development
of a RS framework for EO applications were addressed by the author. DL models need a
large quantity of data for effective training. The availability of RS datasets has been con-
tinually increasing over the years. Still, the flexibility to carry out large-scale experiments,
including specific study areas, comes at the cost of increased efforts for the user. TO 2
(information extraction) was fulfilled through a significant effort devoted to simplifying
the extraction of informative samples to feed the DL models. Motivated by the need for
increased temporal resolution of multispectral imagery, an investigation on approaches for
the densification of T'S of RS data was performed. TO 4 (multi-source data) was reached

31
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by the utilization of methodologies to harmonize data from S2 and L8 missions, which
were shown to enhanceLC classification performances. TO 3 (evaluation of obtained
results) was achieved by borrowing tools from classical ML, conducting assessments of
results obtained with DL that helped the validation of the scientific approaches developed
to carry out a variety of tasks for EO applications. Since the computationally demanding
iterative optimization of DL on large datasets hinders the execution of the experiments
by the researcher and results in a long time to deployment for actual use cases, to tackle
these issues, a multifold strategy relying on data parallelism was adopted, achieving a
significant speed-up of such time-consuming process.

Throughout the project, various research and development activities were conducted to
tackle the challenges above in scientific applications. Notably, the first objective (TO 1)
(near-linear scaling on HPC systems) was accomplished by implementing data parallelism
techniques, which enabled near-linear scaling of DL models. As a result, the time to
convergence was significantly reduced, thereby addressing one of the significant obstacles
in the field. The rapidly evolving technological landscape, situated at the intersection of
dynamic advancements in DL architectures, cutting-edge libraries for DDL, and the ever-
changing HPC landscape, demands a continuous and unwavering focus to fully leverage
the adoption of these diverse technological solutions to tackle pressing scientific challenges.
Paper II demonstrates that ML methods can compete with classical methods in the case
study of PSC classification while also utilizing tools for visualization and validation of the
obtained results. Paper III shows the benefits of using a more advanced optimizer on a
RS dataset, which lays the foundation for further studies on hyperparameter tuning and
model optimization in a scalable setting.

The use of data parallelism as a strategy for DDL is a common theme in Paper I, V
and VI, which present different use cases for LC classification. Paper I utilizes the RS
BigEarthNet dataset, with up to 96 GPUs and a combination of strategies to address the
problem of large global batch size. This reduces the time to convergence of a ResNet50
CNN. Paper V and VI, on the other hand, employ a whole modular framework for data
query, download, and pre-processing on HPC systems, enabling flexible utilization of TS
acquired by the Sentinel-2 constellation. DL models that exploit the temporal dynamics
of the input signal are employed to increase the consistency of the output multi-year LC
maps. Paper IV, a method based on pix2pix is used to successfully densify a TS of RS
data, resulting in increased accuracy in an LC classification task.

5.2. Future Directions

Integrating EO data with other modalities, such as climatic data records, national surveys,
or social-media information, holds great potential for advancing the field. By combining
data from various sources, researchers can gain a more complete and nuanced understand-
ing of the phenomena they study. Many research paths have become available with large
amounts of data and using the DL models.
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Workflows serve as a method for organizing and automating a sequence of computational
and data manipulation tasks. These tasks can be visually represented as a series of
building blocks, and formalizing them enables the code to be reused and transported
across various platforms. Workflow managers are software tools that aid in designing and
executing workflows, and they can optimize processing using mathematical principles like
scheduling and parallelization. One promising direction is the deployment of workflows on
HPC systems to enable continual ingestion of new data, which can be achieved through
tools such as Apache Airflow '. Adopting such tools could help researchers keep their
models up-to-date with the latest information, improve the accuracy of their predictions,
and deploy the applications at scale.

Another critical area of research is hyperparameter tuning of DL models, which can
significantly improve model performance [1]. To achieve high performance in deep neural
networks, it is necessary to set appropriate hyperparameters before training. However,
determining the best hyperparameters for a specific task can be challenging and time-
consuming. Typically, this involves a lot of manual tuning, which can lead to significant
improvements in performance but may require a considerable amount of computational
resources. Omne of the main challenges in finding the optimal set of hyperparameters
is the expensive evaluation of different configurations. Running an entire training for
each configuration can be computationally expensive and time-consuming. To overcome
this challenge, researchers have proposed two main strategies for reducing the overall
computational costs:

o Improving the choice of hyperparameters with optimization algorithms: optimiza-
tion algorithms can help automate the hyperparameter tuning process by efficiently
searching for their best combination. Examples of such algorithms include grid
search, random search, and Bayesian optimization.

e Reducing the runtime of the training runs: researchers have proposed several tech-
niques to reduce the time required to train deep neural networks, such as using faster
optimization algorithms, reducing the network size, and using parallel processing.

In addition, including multi-source data holds great potential for improving the quality
of model outputs. By combining data from multiple sources, researchers can gain a more
comprehensive view of the phenomena they study. The exponential growth of the volume
of data collected by various RS sensors mounted onboard satellites and airborne has sig-
nificantly increased in recent years [114]. Ancillary data from sources like social media,
crowdsourcing, and web scraping are also gaining importance as sources of information.
The sensors on these platforms vary significantly in terms of the properties they sense and
their data’s spatial and spectral resolution. The challenges posed by the vast amounts
of data from different sources include processing it effectively and efficiently, especially
when combining datasets to extract maximum utility [33]. Multi-source data fusion has
recently received significant attention in addressing these challenges. Advances in com-
puting power, data interoperability, and data fusion methods have enabled effectively

'https://airflow.apache.org/
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managing and analyzing these large and complex datasets.

Finally, the spatial information, exploited and well understood for a long time [100, 21],
could be coupled with the temporal information [34] to learn a better representation of
the patterns in the data. The use of DL models that exploit spatio-temporal information,
such as ViVit [4] or ConvLSTM [90], is an area of active research in RS [58, 57]. These
models are particularly well-suited for analyzing EO data since they can capture its spatial
and temporal dimensions. As such, they promise to advance the field and unlock the full
potential of EO data.
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Abstract: High-Performance Computing (HPC) has recently been attracting more attention in
remote sensing applications due to the challenges posed by the increased amount of open data
that are produced daily by Earth Observation (EO) programs. The unique parallel computing
environments and programming techniques that are integrated in High-Performance Computing
(HPC) systems are able to solve large-scale problems such as the training of classification algorithms
with large amounts of Remote Sensing (RS) data. This paper shows that the training of state-of-the-art
deep Convolutional Neural Networks (CNNs) can be efficiently performed in distributed fashion
using parallel implementation techniques on HPC machines containing a large number of Graphics
Processing Units (GPUs). The experimental results confirm that distributed training can drastically
reduce the amount of time needed to perform full training, resulting in near linear scaling without
loss of test accuracy.

Keywords: distributed deep learning; high performance computing; residual neural network;
convolutional neural network; classification; sentinel-2

1. Introduction

Modern Earth Observation (EO) programs have an open data policy and provide a massive
volume of free multisensor data every day. Their systems have substantially advanced in recent
decades due to the technological evolution integrated into Remote Sensing (RS) optical and microwave
instruments [1]. NASA’s Landsat [2] (i.e., the longest running EO program) and ESA’s Copernicus [3]
provide data with high spectral-spatial coverage at high revisiting time, which enables global
monitoring of the Earth in a near real-time manner. Copernicus, with its fleet of Sentinel satellites,
is now the World’s largest single EO program (https://sentinel.esa.int/web/sentinel /missions).
These programs are showing that the vast amount of raw data available call for re-definition of the
challenges within the entire RS life cycle (i.e., data acquisition, processing, and application phases). It is
not by coincidence that RS data are now described under the big data terminology, with characteristics
such as volume (increasing scale of acquired/archived data), velocity (rapidly growing data generation
rate and real-time processing needs), variety (data acquired from multiple satellites’ sensors that have
different spectral, spatial, temporal, and radiometric resolutions), veracity (data uncertainty /accuracy),
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and value (extracted information) [4,5]. The Sentinel-2 mission, for instance, has been operating since
June 2017 with a constellation of two polar orbiting satellite platforms, which allow a temporal
resolution of 5 days at the equator (and even less for areas covered by more than one orbit).
Both Sentinel-2A and Sentinel-2B are equipped with a Multispectral (MS) instrument which acquires
13 optical narrow bands in moderate-to-high spatial resolution (10, 20, and 60 m) and generates
23 TB/day of MS data. The freely available imagery from Sentinel-2 received major attention within
the research community. From 1 December 2017 to 30 November 2018, the Sentinel Data Access
System had a publication rate of over 26,500 products/day with an average daily download volume
of 166 TB (https:/ /sentinels.copernicus.eu/web/sentinel /news/-/article /2018-sentinel-data-access-
annual-report). The large-scale, high-frequency monitoring of the Earth requires robust and scalable
Machine Learning (ML) models trained over annotated (i.e., not raw) time series of multisensor images
at global level [6,7] (e.g., acquired by Landsat 8 and Sentinel-2). However, these data do not exist
yet. This is largely due to the inherent interpretation complexity of RS data (e.g., hyperspectral and
RADAR data) and the effort and cost involved in the collection of training samples. This remains a
key limiting factor in the RS community for the research and development of successfully operational
Deep Learning (DL) classifiers for RS data.

Nevertheless, DL has already brought crucial achievements in solving RS image classification
problems, working on raw multispectral satellite image data [8-10]. The state-of-the-art results
have been achieved via deep networks with backbones based on convolutional transformations
(e.g., Convolutional Neural Networks (CNNs) [11,12], Recurrent Neural Networks (RNNs) [13],
and Generative Adversarial Networks (GANSs) [14]). Their hierarchical architecture composed of
stacked repetitive operations enables the extraction of useful image features from raw pixel data
and modeling high-level semantic content of RS images. However, DL architectures have a much
larger number of parameters to estimate than classic ML methods (e.g., shallow classifiers based on
handcrafted features) [15]. Thus, their performance and generalization capabilities are considerably
dependent on the amount and quality of available training data. That is, to train these networks, a very
large annotated training set of sufficient diversity is needed in order to learn effective models.

Table 1 shows the main free annotated remote sensing datasets (i.e., for classification of RGB and
MS images) that are currently available for benchmarking DL classifiers. The gap in terms of data
size with the computer vision domain (e.g., ImageNet with 14,197,122 images (http://www.image-
net.org/)) is still considerably high. Nonetheless, there is an evident trend towards datasets with a
higher number of annotated samples and degree of classification complexity (e.g., BigEarthNet [16],
a multiclass classification task of 590,326 images). Consequently, the computational intensity and
memory demands of DL will continuously increase in the future. In this scenario, approaches relying
on local workstation machines (i.e., using MATLAB, R, SAS, SNAP, and ENVI for data analysis and
interpretation), can provide only limited capabilities. Despite modern commodity computers and
laptops becoming more powerful in terms of multicore configurations and GPUs, the limitations with
regard to computational power and memory are always an issue when it comes to fast training of
large high-accuracy models from correspondingly large amounts of data. Therefore, the use of highly
scalable and parallel distributed architectures (such as clusters [17], grids [18], or clouds [19]) is a
necessary solution to train DL classifiers in a reasonable amount of time, which can then also provide
users with a high-accuracy performance in the recognition tasks. High-Performance Computing (HPC)
systems can reach a performance in the order of petaflops (i.e., 10!® floating point operations per
second) and are already delivering unprecedented breakthroughs [20]. It is important to observe that
ML and DL algorithms have transformed the workloads and workflows that run on these systems,
especially when compared to classic HPC simulation problems. DL algorithms require higher memory
and networking bandwidth throughput capabilities, as well as optimized software and libraries to
deliver the required performance. On the one hand, DL can lead to more accurate classification results
of land cover classes when networks are trained over large RS annotated datasets. On the other hand,
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deep networks pose challenges in terms of training time. In fact, the use of a large datasets for training
a DL model requires the availability of non-negligible time resources.
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Table 1. Non-exhaustive list of open remote sensing datasets for image classification.

Datasets Image Type Image Per Class Scene Classes  Annotation Type  Total Images Spatial Resolution (m) Image Sizes Year Ref.
UC Merced Aerial RGB 100 21 Single/Multi label 2100 0.3 256 x 256 2010 [21]
WHU-RS19 Aerial RGB ~50 19 Single label 1005 up to 0.5 600 x 600 2012 [22]

RSSCN7 Aerial RGB 400 7 Single label 2800 - 400 x 400 2015 [23]

SAT-6 Aerial MS - 6 Single label 405,000 1 28 x 28 2015 [24]
SIRI-WHU Aerial RGB 200 12 Single label 2400 2 200 x 200 2016 [25]
RSC11 Aerial RGB 100 11 Single label 1323 0.2 512 x 512 2016 [26]
Brazilian Coffee  Satellite MS 1438 2 Single label 2876 - 64 x 64 2016  [27]
RESISC45 Aerial RGB 700 45 Single label 31500 30t0 0.2 256 x 256 2016 [28]
AID Aerial RGB ~300 30 Single label 10,000 0.6 600 x 600 2016  [29]
EuroSAT Satellite MS ~2500 10 Single label 27,000 10 64 x 64 2017 [30]
RSI-CB128 Aerial RGB ~800 45 Single label 36,000 03to3 128 x 128 2017 [6]
RSI-CB256 Aerial RGB ~690 35 Single label 24,000 03to3 256 x 256 2017 [6]
PatternNet Aerial RGB ~800 38 Single label 30,400 0.062~4.693 256 x 256 2017 [31]
120 x 120
BigEarthNet  Satellite MS 328 to 217,119 13 Multi label 590,326 10,20,60 60x60  20ms [16]

20 x 20
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The objective of this contribution is to show that HPC systems speed up the training of DL
networks through distributed training frameworks, which can exploit the parallel environment of HPC
clusters. The distribution of the model among multiple nodes can considerably speed up the process
of training it. This enables deployment of various models and comparison of their performances in a
reasonable amount of time. The training of the model is performed via a multimachine data parallelism
strategy that allows minimizing the time required to finish full training: The processing is distributed
across multiple machines connected by a fast dedicated network (i.e., InfiniBand). This paper proposes
a high-performance distributed implementation of the Residual Network (ResNet) [32] type of deep
convolutional networks (so-called deep residual networks) for the multiclass RS image classification
problem. The experiments are performed with the BigEarthNet [16] dataset over the HPC systems
that are based at the Jiilich Supercomputing Centre. The experimental results attest that distributed
deep neural network training can extremely reduce the amount of time that is required to complete
the training step without affecting prediction accuracy.

2. Deep Learning

2.1. The ResNet

ResNet is a deep residual CNN architecture developed by He et al. in [32] to overcome difficulties
in training networks with a very large number of layers (>20, up to 1000 layers and more possible [33]),
winning the ImageNet competition in 2015 [34]. The first instantiations of deep feed-forward CNNs
were the ones providing groundbreaking advances in the field of computer vision on tasks like object
detection and object recognition, outperforming previous state-of-the-art ML methods by large margins,
e.g., AlexNet with 8 layers [35], VGG with 16 layers [36] or GoogleNet (Inception) with 22 layers [37].
An increasing number of processing layers resulted in further increasing accuracy performance on
ImageNet challenges in terms of class recognition rates (the ImageNet-1k challenge has 1000 different
object classes that have to be successfully learned during the training on 1.2 Million images [35,38]).

However, simply increasing the number of layers further by stacking more and more convolutional
and other layers (pooling, etc) on top of each other was not functionally successful. The training of
very deep networks resulted in worse accuracy, contrary to expectations set by previous results. It has
been noted that degradation of the training accuracies may be partly caused by a phenomenon known
as vanishing (or exploding) gradients. ResNet architecture has been designed to overcome this issue
by introducing so-called residual blocks featuring skip connections. These connections implemented
an explicit identity mapping for each successor layer in a deep network in addition to the learned
operations that were applied to the input before it reaches the next layer [32,33]. The network was
thus forced to learn residual mappings corresponding to useful transformations and feature extraction
on the image input, while loss gradients could still flow undisturbed during the backward pass via
available skip connections through the whole depth of the network. Different ResNet networks were
shown to train successfully with a number of layers that was impossible to handle before, while using a
smaller number of parameters than previous, less deep architectures (e.g, VGG or Inception networks),
thus allowing for faster training.

ResNet-50 (where the number indicates the number of layers) has since then established a strong
baseline in terms of accuracy, representing good trade-off between accuracy, depth, and number of
parameters, in the same time being very suitable for parallelized, distributed training. As it still
remains the strong baseline for object recognition tasks and is also widely used in scenarios for transfer
learning ([39-41]), the ResNet-50 architecture is adopted for experiments to show successful distributed
training for multiclass, multilabel classification from RS multispectral images.

2.2. Distributed Frameworks

Despite the permanently increasing computational power of Central Processing Unit (CPU)- and
Graphics Processing Unit (GPU)-based hardware and essential improvements in efficiency of deep
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neural network architectures like ResNet, it remains still a computationally very demanding procedure
to train a particular deep neural network to successfully perform a challenging task like object
recognition. Even with state-of-the-art hardware like NVIDIAs V100, full training of a ResNet-50 object
recognition network on ImageNet-1k dataset of 1.2 Million images using a single GPU can still take
more than one day on a single workstation machine (also when taking into account possible acceleration
via more efficient mixed-precision (fp16 and fp32) training or special optimized computational graph
compilers like TensorFlow’s XLA). To conduct a multitude of experiments with various network
architectures on large datasets, training therefore constitutes a prohibitively time-expensive procedure.

To overcome these limitations imposed by computationally expensive training, the DL community
envisages different methods that enable distributed training across multiple computing nodes of
clusters or HPC machines equipped with accelerators like GPUs or highly specialized TPUs [42,43].
Using these methods, it became possible to perform distributed training of large network models
without loss of task performance and drastically reduce the amount of time necessary for a complete
training. For instance, the time to fully train an object recognition network model on ImageNet-1k
(1.2 Millions of images, ca. 80—100 epochs necessary for training to converge) was reduced by orders of
magnitude only within a few years from almost one day to few minutes without substantial loss in
recognition accuracy [44,45].

This work relies on a certain type of distributed training to conduct scaling experiments and make
use of Horovod—a software library that offers a convenient way to execute training and supports
TensorFlow and Keras [46]. Using Horovod, only a few modifications in the standard code used
for quick single node model prototyping are necessary to adapt it for distributed execution across
many nodes.

To enable distributed training, Horovod adapts a data parallel scheme. In the data parallel scheme,
it is assumed that a network model to be trained can fit into the memory of a single GPU device.
Many so-called workers can be then instantiated during the training, each occupying one available
GPU. Each worker contains a clone of the network to train and gets a separate portion of data to
train on, so that for each model update iteration, the global data mini-batch is split into different
portions that are assigned to each worker. Working on their own portion of the mini-batch, each worker
performs a forward pass to compute the network activations and the local loss given their current
input, and a backward pass to compute the local gradients.

To keep all the network models across workers in sync, Horovod employs a decentralized,
synchronous update strategy based on Ring-AllReduce operations [46,47], where gradients of all
workers are collected, averaged, and applied to every clone model network to update their parameter
weights. This is in contrast to centralized update strategies that usually require so-called parameter
servers (PS) to communicate model parameters to the workers.

However, those implementations rely on TCP/IP internode communication, which is not available
on our machines. On the other hand, Horovod relies on operations based on MPI and NCCL libraries,
thus being our preferred choice.

The decentralized update makes better use of network topologies connecting the respective
machines and thus usually employs a more efficient, homogeneous communication strategy to perform
distributed training. On the one hand, the centralized parameter server-based update strategy offers
the flexibility to add or remove the workers, which requires only reconfiguration of a parameter
server. On the other hand, the decentralized approach may offer higher fault tolerance in terms of
not having one weak spot in the communication chain—when a parameter server fails, it is hard
to resume training; when a worker node fails, communication in the decentralized approach can
still be reconfigured without affecting training, as every other working node possesses a full copy of
the model.

For less reliable cluster systems, decentralized updates are therefore a viable option. For robust
HPC systems, where note failure is rare, centralized schemes can be a performant choice as well.
However, to avoid bottlenecks in communication during large-scale distributed training on HPC,
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the setup of many PS is required, which complicates resource allocation, increases complexity of the
necessary code, and makes proper training implementation difficult [42]. Thus, using a decentralized
update scheme as employed by Horovod is an efficient choice in terms of simplicity and speed for
distributed training on HPC.

As a high-level framework at the top of deep learning libraries, Horovod uses well-established MPI
CUDA-aware routines and relies on the NCCL library [46,48] for efficient and robust implementation
of communication between workers that makes the best out of the available network topology and
bandwidth. The choice for Horovod as library for efficient distributed training is also motivated by
the ease, clear structure, and transparency of the necessary code modifications. The corresponding
strategy can be as well implemented in pure TensorFlow via the distributed strategies framework [49];
however, the effort to rewrite a single node prototype code is still considerably more when compared
to modifications required by Horovod. Horovod also supports a unified scheme for using it with
other libraries (PyTorch, MxNet), which again minimizes the effort to deal with specific details of each
respective framework when implementing distributed training.

Apart from issues regarding efficient communication of information necessary for model updates
during distributed training across multiple nodes, there is a further aspect to be dealt with in the
algorithmic challenge to perform distributed training. This aspect is rooted in the nature of the
optimization procedure that performs actual loss minimization. The majority of the optimization
methods used to minimize loss during training are different variations of Stochastic Gradient Descent
(SGD). If training has to be distributed across a substantial amount of workers, the effective size
of the global mini-batch has to grow. Optimization thus has to cope with mini-batch sizes that are
substantially larger that those used for training on a single node. Large mini-batches (for ImageNet,
in the order of a few thousand images per batch as compared to the standard mini-batch size of a few
hundreds for single node training) lead to substantial degradation of performance, e.g., recognition
accuracy, if used without any additional countermeasures [50]. This may be partly due to the very
nature of SGD, which requires a certain amount of noise produced by the rather small sizes of
mini-batches used for update steps.

Currently, there are different solutions to secure the same performance level achieved on a
single node with small mini-batch sizes despite the essential increase of the effective mini-batch size
during distributed training. In the core of the simplest solutions is the tuning of the learning rate
schedule that uses warm-up phases before the training, scales the learning rate with the number
of distributed workers, and reduces the rate according to a fixed factor after a fixed number of
epochs [6,44,50]. More sophisticated strategies to deal with very large batch sizes (for ImageNet,
for instance, greater than 213 = 8192) use adaptive learning rates that are tuned dependent on network
layer depth and the value of computed gradients and progress of training, such as that employed in
LARS (Layer-wise Adaptive Rate Scaling)—an adaptive optimizer dedicated to large-scale distributed
training setting [45,51].

3. Experimental Setup

3.1. Data

The training of the models was carried out using the list of patches provided by BigEarthNet
(http:/ /bigearth.net/). BigEarthNet is an archive consisting of 590,326 patches extracted from 125
Sentinel-2 tiles (Level 2A) acquired from June 2017 to May 2018 [16]. A number of labels is associated
with each patch. The 43 labels originate from the CORINE Land Cover (CLS) inventory of 2018,
available for 10 European countries. According to [16], the number of labels for each patch varies
between 1 and 12, being in 95% of the cases at most 5. The patches have 12 spectral bands: (a) the
3 RGB bands and band 8 at 10 m resolution (120 x 120 pixels), (b) bands 5, 6, 7, 8a, 11, and 12 at 20 m
resolution (60 x 60 pixels), and (c) band 1 and 9 at 60 m resolution (20 x 20 pixels). Band 10 has been
excluded since it is used mainly for cirrus detection [52]. BigEarthNet also provides a list of the patches
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with a significant amount of the area covered by snow or clouds, making it possible to exclude them
from the analysis [53]. Figure 1 shows an example of the patches.

(a) (b) (d)

Figure 1. Example of patches: (a) agro-forestry areas, complex cultivation patterns, non-irrigated arable
land, transitional woodland/shrub, water bodies, (b) airports, olive groves, permanently irrigated
land, (c) broad-leaved forest, burnt areas, transitional woodland/shrub, (d) beaches/dunes/sands,
estuaries, sea and ocean, and sport and leisure facilities.

3.2. Environment

The experiments were carried on two HPC sytems installed at the Jiilich Supercomputing Centre:
the Jiilich Wizard for European Leadership Science JUWELS) [54], and the Jiilich Research on Exascale
Cluster Architectures (JURECA) [55] supercomputers. In both machines, GPUs partitions were used:
JUWELS consists of 46 nodes, with each having four NVIDIA V100 GPUs (with 16 GB of memory each),
while JURECA has 75 nodes, each equipped with four NVIDIA K80 GPUs (with 24 GB of memory
each). The available benchmark for the experiments relies on a maximum of 24 nodes (i.e., 96 GPUs)
for each system.

For the evaluation, the following Python libraries were used: TensorFlow 1.13.1, Keras 2.2.4,
Horovod 0.16.2, Mpidpy 3.0.1 and Scikit-learn 0.20.3.

In order to upsample the Sentinel-2 bands at a lower resolution to the maximum resolution of
10 m, we use two different upscaling methods. One is based on the super-resolution deep network
approach proposed by Lanaras et al. in [56]. Using super-resolved images, we can obtain the same
high resolution across different bands. The authors provide a pretrained CNN model (i.e., DSen2 (https:
//github.com/lanha/DSen?2)) that was trained over a large Sentinel-2 training set which covers a wide
range of geographical locations across different climate zones and land-cover types [56]. Another is
based on simple standard bilinear interpolation. The simple upscaling is there to check whether there
is any advantage in using an advanced super-resolution technique in our case.

The extraction of the patches was carried out with the Geospatial Data Abstraction Library GDAL
2.3.2 through its Python API. GDAL [57] is an open source programming library and set of utilities
that facilitates the manipulation of raster data: It helps with data translation from different file formats,
data types, and map projections.

3.3. Preprocessing Pipeline

One of the aims of this work is to evaluate models’” performance that take Sentinel-2 patches
as input, with all the multispectral bands upsampled to the resolution of 10 m for the RGB bands.
The original BigEarthNet archive was used as a basis to extract the information for generating a
new dataset, one that includes super-resolved patches, as well as the original ones (i.e., publicly
available (http://hdl.handle.net/21.11125/921dbc5e-5948-4453-90c0-40b399ffa418)). In order to
extract bands at a higher resolution, and to study whether those could help in enhancing the
performances of the classification scheme, the DSen2 framework was employed to obtain patches
in which the bands originally at a lower resolution (20 and 60 m) were super-resolved: In this way,
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all bands become available at the maximum resolution of 10 m. DSen2 consists of two CNNs to
perform the trained enhancement of the lower resolution bands into the highest resolution [56].

As shown in Figure 2, the first step in the preprocessing pipeline was to download the
freely-available 125 Level 2A tiles from Copernicus Data Hub (https://scihub.copernicus.eu/).
After that, the tiles were given as input to DSen2, and in this way, the upsampled tiles were computed.
To extract BigEarthNet's original 519,226 patches with a low percentage of snow or cloud coverage, the
approach described by the parallel Algorithm 1 was adopted. The algorithm computes the number of
patches belonging to each Sentinel-2 tile and creates a matrix with the indices of the tile to be processed
by each CPU, in such a way that the total amount of total patches is similar among all processors.
With this strategy, idle time is avoided (e.g., a process that already extracted a small number of patches
has to wait until other processes to finish their task). The algorithm was executed in parallel using
72 CPUs on JURECA.

The patches were saved in a single Hierarchical Data Format 5 (HDF5) [58] file. This format can
be written and read in parallel. It has been organized by associating the data with different keys:
“data_super” is the key of the datacube with the 12 upsampled multispectral bands, “data_10m”,
“data_20m” and “data_60m” stands for datacubes of bands at the original resolution of 10, 20, and
60 m. respectively, and “classes” includes the labels of each patch already binarized.

1
List of List of patches
Tiles t patches with snow or
1

clouds 1_sn l
Filter out from 1 the

R . . patches to be N Extract patches
Distribute tiles Load tiles extracted those with using GDAL

snow and clouds

Coordinates c

Save datacubes
and labels to hdf — File f
file with their keys

Labels Fit label
L

S
transormer || Binarize labels

Figure 2. Preprocessing pipeline: extraction of the Sentinel-2 patches and their corresponding classes.
Patches covered in snow and clouds are excluded.

Algorithm 1 Distribution of tiles

Input: input parameters n number of CPUs and ¢ tiles

Output: matrix M with indices of tiles per processor

1: M < range(nproc)

2. if n —size(t) > 0 then

3 for i < 1tolen(t)/n) do

4 arr < zeros([1proc])

5 arr < toalues[0 : Hproc

6 M < wvstack([M, flip(pad(range((i + 1) X nproc, (i + 1) X nproc + len(b), 1), (0, len(arr) —
len(b)))

7: else

8: M+t
9: return M

3.4. Multilabel Classification

Even though in some RS applications, the use of a single label per sample of a scene may be
sufficient for a correct classification, there are cases where it might not be sufficient. As stated in [59],
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an image of a beach could be correctly classified with a single label, without the need for separated
labels such as “sand”, “sea”, or “buildings”. Multilabel classification is defined as that type of
classification where classes associated to each sample are not mutually exclusive [60].

According to [59], however, more complex scenarios require finer-grain labeling. For instance,
distinguishing between images of urban areas with different building densities would require specific
classes, which may also occur in combination with the presence of other classes, such as “road” or
“green area”. A characteristic of multilabeling classification is, in fact, that the occurrence of some class
could be correlated with those of others appearing in similar scenarios.

The standard approach when it comes to the computation of the loss function in the multilabel
classification case is the binary cross entropy. A vector of dimension equal to the number of classes is
associated to each sample, where every vector cell represents the presence or absence of a specific class.
In this way, the problem can be dealt with as a binary classification problem for each of the classes,
hence treating them independently. The activation function used for multilabel classification is the
sigmoid function, squashing all the elements of the label vector between 0 and 1. This is different from
using the softmax activation function, which transforms the probabilities so that they sum up to 1.
Instead, using the sigmoid function, it is possible to assure that the labels are not mutually exclusive in
the multilabel case, but more than one can be associated to each sample.

3.5. Restricted RGB and Original Multispectral ResNet-50

Two configurations have been considered for the experiments to establish baselines for successful
training. They differ according to the data in input: (a) input is limited to three RGB bands only, and (b)
input contains 12 multispectral bands. The motivation is, on the one hand, to prepare grounds for
transfer learning experiments using ImageNet pretraining on the data that contain RGB channels
only. On the other hand, RGB configuration serves as a minimal baseline to check whether a full
multispectral input can provide any additional boost for classification performance within standard
ResNet architecture.

The classification scheme used in this paper is based on a slightly modified version of ResNet-50.
In the present work, some changes to the model have been made to better adapt it to the land cover
classification problem. The output layer has been modified to output the prediction probabilities for
the 43 CLC classes. The input size has been changed from the original size of 224 x 224 pixels for
each image to the size of the patches (i.e., 120 x 120 for the 10 m, 60 x 60 for the 20 m, and 20 x 20
for the 60 m resolution). Two different kinds of regularization have been adopted to reduce the
risk of overfitting: (1) an L2 regularization has been applied to all convolutional layers to penalize
large weights, and (2) a dropout with probability equal to 0.5 has been placed before the model’s last
dense layer.

Two data augmentation techniques were used. The first one is a simple rotation of 90, 180 or
270° and a flip operation, applied randomly to the patches.The second method is called a mix-up and
consists in taking a batch and subtracting from it a shuffled version of itself, with a probability drawn
from a beta distribution for each patch [61]. The use of these virtual augmented data created with a
simple linear combination of the original samples encourages the model to learn smoother decision
boundaries, making it more robust when unseen samples are fed into the network. An SGD with
Nesterov momentum was selected as an optimizer [62]. The initial learning rate was computed as
n= 0.12% [50], where k is the number of workers (i.e., GPUs) and # is the batch size for each worker,
which in this paper is set to 64. In our work, a step decay learning annealing schedule was used:
The actual learning rate was computed multiplying by 0.1 the original learning rate after 30 epochs,
by 0.01 after 60 epochs. and by 0.001 after 80 epochs. In our work, we trained the models for a total
of 100 epochs. This technique is used to reduce the probability of the model to get stuck in a plateau
using a too small learning rate, while on the other hand, a learning rate which is too high may cause
an instability in the optimization process [63]. A warm-up of 5 epochs was applied at the start of the
training process.
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4. Results

4.1. Classification

The classification results are presented for the RGB and the multispectral models. Both models
were adapted to the problem of multilabel classification from the original ResNet-50 [32]. For the
performance metric of the experiment, we employed the F1 score, which is widely used for multiabel
image classification problems. In Tables 2 and 3, the prediction results for a single experiment
performed over 1 node of JUWELS (i.e., 4 NVIDIA V100 GPUs) are reported. For this proposed
ResNet-50 architecture, the model trained on RGB bands performs almost as well as the multispectral
model (see Table 2 that shows the global scores). The prediction scores of each individual class are
reported by Table 3. It can be seen that some classes have a very high F1 score: e.g., the class “Sea
and ocean” has a high F1 score. This is not surprising due to to the specific distinguishable spectral
signature of water. For the same reason, the class “Coastal lagoons” is also easily detected by the model,
despite heavy imbalance—this class has a much smaller number of samples compared, for instance,
to “Sea and ocean”.

Table 2. Classification results for the RGB and multispectral model: P precision, R recall and F1 score.

P R F1

RGB 0.82 071 077
multispectral 0.83 0.75 0.79

Table 3. Classification results of each class for the RGB and multispectral model: F1 score and support
for each class considering the test set.

Support  F1 (Multispectral)  F1 (RGB)

Agro-forestry areas 5611 0.803621 0.795872
Airports 157 0.300518 0.374384
Annual crops associated with permanent crops 1275 0.457738 0.442318
Bare rock 511 0.604819 0.620192
Beaches, dunes, sands 319 0.695810 0.608964
Broad-leaved forest 28,090 0.791465 0.771761
Burnt areas 66 0.029851 0
Coastal lagoons 287 0.884758 0.880294
Complex cultivation patterns 21,142 0.722448 0.698238
Coniferous forest 33,583 0.874152 0.866716
Construction sites 244 0.234482 0.213058
Continuous urban fabric 1975 0.784672 0.517737
Discontinuous urban fabric 13,338 0.780262 0.722825
Dump sites 181 0.287037 0.268518
Estuaries 197 0.699088 0.585034
Fruit trees and berry plantations 875 0.452648 0.417887
Green urban areas 338 0.387750 0.369477
Industrial or commercial units 2417 0.552506 0.556856
Inland marshes 1142 0.408505 0.364675
Intertidal flats 216 0.635097 0.584126
Land principally occupied by agriculture 26,447 0.686677 0.667633
Mineral extraction sites 835 0.507598 0.490980
Mixed forest 35,975 0.834221 0.797793
Moors and heathland 1060 0.561134 0.430953
Natural grassland 2273 0.569581 0.512231
Non-irrigated arable land 36,562 0.865387 0.839924

Olive groves 2372 0.621071 0.541914
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Table 3. Cont.

Support  F1 (Multispectral)  F1 (RGB)

Pastures 20,770 0.780565 0.771802
Peatbogs 3411 0.535477 0.690319
Permanently irrigated land 2505 0.675662 0.643835
Port areas 93 0.503597 0.522388
Rice fields 709 0.669542 0.604770
Road and rail networks and associated land 671 0.300785 0.268623
Salines 75 0.608000 0.517857
Salt marshes 264 0.568578 0.532299
Sclerophyllous vegetation 2114 0.762123 0.671300
Sea and ocean 13,964 0.909013 0.979917
Sparsely vegetated areas 261 0.483460 0.380681
Sport and leisure facilities 996 0.367029 0.406827
Transitional woodland /shrub 29,671 0.664189 0.639412
Vineyards 1821 0.564012 0.545454
Water bodies 11,545 0.858107 0.823858
Water courses 1914 0.803948 0.737060

4.2. Processing Time

The processing times of the JURECA and JUWELS systems are reported only for the multispectral
model. Due to the limited amount of computing time (i.e., core hours) allocated for this project,
each experiment has been run only twice. Figures 3 and 4 report the mean and standard deviation
values. It can be observed that the training time using two nodes (i.e., 8 GPUs) is half (172 s for an
epoch on JUWELS) of the time required to execute the same training with one node (i.e., 4 GPUs)
(347 s). The same can be said in the cases where 2 vs. 4 (172 s vs. 86 s), 4 vs. 8 (86 s vs. 42 s) and 8 vs. 16
(42 s vs. 20 s) nodes are considered. However, the scaling between 12 and 24 nodes seems to be less
than linear (27 s vs. 15 s).

The use of this distribution approach has allowed us to reduce the total time for a full training on
JUWELS from almost 35,000 s using 4 GPUs on 1 node to less than 2500 s using 96 GPUs on 24 nodes.
The results on JURECA shown in Figure 4 confirm this observation. Although it can be seen that
the full run on JURECA (on 2 nodes approximately 14 h, as can be seen in Figure 5) takes almost 3
times more time than those run on JUWELS (on 2 nodes in less than 5 h) due to the available GPUs
(K80 vs. V100), on the other hand, taking advantage of this parallelization framework has enabled the
full training of the model using older GPUs in a reasonable amount of time.

5. Discussion

The class imbalance poses a serious caveat on the performances of the models. In fact, it can
be observed that there are classes which are heavily under-represented compared to others—e.g.,
in the test subset considered for this work, there are more than 30,000 patches associated with the
label “Coniferous forest” but just 93 with label “Port areas”. Thus, it comes as no surprise that the
F1 score obtained for the classes with a low support (i.e., low number of samples) is on average less
than the F1 score of the most populated classes of the dataset, since it is known that class imbalance
can cause a bias towards the majority class [64]. As reported in Section 3.5 in this work, two simple
data augmentation techniques were applied. However, the problem of class imbalance may require
the use of of different techniques, e.g., upsampling of the under-represented samples [65] or loss
weighting to let the model give more importance to samples associated with classes present in a lesser
amount [64]. These methods should be implemented and tested in future work.W Another limitation
that stems from the imbalance problem is that the spectral signature (i.e., the radiation reflected by
the surface as a function of the wavelength) of areas associated with some classes could change over
time, causing low classification results. That may be the case for the class “Burnt areas” (an example
in Figure 1c), showing a very low F1 score. An approach to deal with such a class could be the adoption
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of a multitemporal analysis, implementing, for instance, a change detection method to identify when
a significant change in the spectral signature of a patch (such as the one caused by a fire) occurs.
Moreover, CLS classes may be semantically too stringent for the purpose of classification of land cover
using optical data alone. As an example, CLS has two different classes for “Discontinuous urban fabric”
and “Green urban areas”, which may represent patches with a similar information content. One last
point which could be considered is the fact that the presence of some classes may be correlated with
those of another one. For instance, it is reasonable to assume that “Beaches, dunes, sands” is correlated
with the presence of classes associated with water, as can be observed in Figure 1d, or that a cultivation
pattern is present at the same time of arable land as in in Figure 1a. In this work, it has not been used a
method to explicitly take this information into account, as, e.g., it was done in [16], where the local
descriptors generated by a CNN were then updated using an LSTM network on subtiles of the patches.

In Section 3.2, we stated that our work makes use of DSen2 to upsample the patches to the same
resolution of 10 m across the different bands. We used DSen2 since it is a well-established method for
super-resolution. However, an experiment in which we used a simple bilinear interpolation, run on 8
nodes on JUWELS, showed a very similar F1 score to those obtained using DSen2 (shown in Figure 6).
Further studies should be conducted to investigate whether different DL models could take advantage
of the enhanced spectral characteristics provided by DSen2.

Section 4.1 mentions that the model trained on RGB bands obtains a slightly lower average F1 score
to the one achieved by the multispectral model. However, for the class airports, bare rock, peatbogs,
port areas, sea ocean, and sport and leisure facilities, the F1 score of RGB is higher. For these classes,
the model that is trained with the multispectral data is not able to isolate the RGB information from the
other bands. Generally, a correct network architecture should deliver at least the same classification
results (since multispectral data include the same RGB bands). As we explain in Section 2.1, we selected
the ResNet-50 since it is a well-established baseline architecture in terms of accuracy, represents a
good trade-off between depth and number of parameters, and is very suitable for parallelization.
According to the current results, we established that ResNet-50 is not suitable to deal properly with the
information provided by all the multispectral bands. However, a more detailed study (i.e., out of the
scope of this work) should be conducted by considering different experimental classification settings
(e.g., compare the classification result obtained with one band against RGB).

As has been stated at the introduction of this paper, DL poses challenging questions in terms
of time required for the training of a model due to the large number of parameters. The results
presented in Section 4.2, confirmed that the Horovod distributed training framework enables the
achievement of near linear scaling. However, when dealing with distributed training, the consistency
of the classification results has to be constantly monitored. The reason is that when the size of the
batch is increased (defined as b, = bg X k, where b, is the effective batch size, by is the batch size
per GPU, and k is the number of GPUs) a degradation of the accuracy often occurs. At first glance
in Figure 6, a slow trend of a decrease in the fscore is apparent when a larger number of nodes is
employed. The results obtained using JUWELS are confirmed also by those from JURECA (please
note that the fscore of 1 node is not reported, since the computation time has exceeded the limit of
the system). Without further special mechanisms, stable training with SGD is possible only for a
total batch size of <8192 [66]. During training, an explosion of the loss during the first epochs with
a high learning rate was typically observed, which does not occur at a more advanced stage of the
training when a lower learning rate is used. This phenomenon is particularly noticeable when a
large number of nodes is used. The initial learning rate is in fact dependent on the number of nodes
in the formula shown in Section 3.5. As a direct consequence, if a large number of nodes is used,
the initial learning rate is large. The step decay learning rate scheduler used in the present work is the
one defined by Goyal et al. [50]; however, different schemes such as the polynomial decay scheduler
could be employed to make the loss less prone to explosion during the training process. The use of
different types of optimizers could as well be studied further in detail as a workaround to overcome
this known problem.
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6. Conclusions

Large-scale deep neural networks have millions of weights and require large amounts of data to
optimize these parameters to converge to a satisfactory testing accuracy. With the size of the learning
networks and annotated remote sensing datasets growing, it becomes possible to automatically extract
useful features and representations suitable for high-accuracy classification tasks, but at the cost of
higher computation time necessary for the full training. The experimental results of this paper confirm
that distributed training over HPC systems can drastically reduce the amount of time needed to
complete the training step, resulting in near linear scaling without significant loss of test accuracy.
The publication of this paper includes the availability of the dataset and the Python implementation of
the models (https:/ /gitlab.com/rocco.sedona/mdpi-paper-bigearth).
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Abbreviations

The following abbreviations are used in this manuscript:

EO Earth Observation

RS Remote Sensing

DL Deep Learning

ML Machine Learning

HPC High-Performance Computing
MPI Message Passing Interface

CNN Convolutional Neural Network
RNN Recurrent Neural Network
GAN Generative Adversarial Network
MS Multispectral

ResNet Residual Network
JUWELS Jiilich Wizard for European Leadership Science
JURECA Jiilich Research on Exascale Cluster Architectures

GPU Graphics Processing Unit
CPU Central Processing Unit
SGD Stochastic Gradient Descent
CLS CORINE Land Cover
References

1.  Emery, W.; Camps, A. Basic Electromagnetic Concepts and Applications to Optical Sensors. In Introduction
to Satellite Remote Sensing; Elsevier: Amsterdam, the Netherlands, 2017. [CrossRef]

2. Wulder, M.A; Masek, J.G.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Opening the archive: How free
data has enabled the science and monitoring promise of Landsat. Remote. Sens. Environ. 2012. [CrossRef]

3. Aschbacher, J. ESA’s earth observation strategy and Copernicus. In Satellite Earth Observations and Their
Impact on Society and Policy; Springer: Singapore, 2017. [CrossRef]

4. Ma, Y,; Wu, H;; Wang, L.; Huang, B.; Zomaya, A.; Jie, W. Remote sensing big data computing: Challenges
and opportunities. Future Gener. Comput. Syst. 2015, 51, 47-60. [CrossRef]

5. Chi, M,; Plaza, A.; Benediktsson, J.A.; Sun, Z.; Shen, J.; Zhu, Y. Big Data for Remote Sensing: Challenges and
Opportunities. Proc. IEEE 2016. [CrossRef]

6. Li, H; Tao, C; Wu, Z; Chen, J.; Gong, J.; Deng, M. RSI-CB: Large Scale Remote. Sens. Image Classif.
Benchmark Via Crowdsource Data. arXiv 2017, arXiv:1705.10450.



62

APPENDIX A. APPENDED PAPERS

Remote Sens. 2019, 11, 3056 17 of 19

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Stoian, A.; Poulain, V.; Inglada, J.; Poughon, V.; Derksen, D. Land Cover Maps Production with High
Resolution Satellite Image Time Series and Convolutional Neural Networks: Adaptations and Limits for
Operational Systems. Remote. Sens. 2019, 11, 1986. [CrossRef]

Ball, J.E.; Anderson, D.T.; Chan, C.S. A Comprehensive Survey of Deep Learning in Remote Sensing:
Theories, Tools and Challenges for the Community. SPIE J. Appl. Remote. Sens. (JARS) Spec. Sect. Feature
Deep. Learn. Remote. Sens. Appl. 2017, 11, 042609. [CrossRef]

Zhu, X.X,; Tuia, D.; Mou, L.; Xia, G.S.; Zhang, L.; Xu, E; Fraundorfer, F. Deep learning in remote sensing:
A comprehensive review and list of resources. IEEE Geosci. Remote. Sens. Mag. 2017, 5, 8-36. [CrossRef]
Ma, L.; Liu, Y.; Zhang, X;; Ye, Y.; Yin, G.; Johnson, B.A. Deep learning in remote sensing applications:
A meta-analysis and review. ISPRS |. Photogramm. Remote. Sens. 2019, 152, 166-177. [CrossRef]

Romero, A.; Gatta, C.; Camps-valls, G.; Member, S. Unsupervised Deep Feature Extraction for Remote
Sensing Image Classification. IEEE Trans. Geosci. Remote. Sens. 2015, 54, 1-14 [CrossRef]

Zhang, L.; Zhang, L.; Du, B. Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of
the Art. IEEE Geosci. Remote. Sens. Mag. 2016, 4, 22-40. [CrossRef]

Ienco, D.; Gaetano, R.; Dupaquier, C.; Maurel, P. Land Cover Classification via Multitemporal Spatial Data
by Deep Recurrent Neural Networks. IEEE Geosci. Remote. Sens. Lett. 2017. [CrossRef]

Lin, D.; Fu, K; Wang, Y.; Xu, G.; Sun, X. MARTA GANSs: Unsupervised Representation Learning for Remote
Sensing Image Classification. IEEE Geosci. Remote. Sens. Lett. 2017. [CrossRef]

Cavallaro, G.; Falco, N.; Dalla Mura, M.; Benediktsson, J.A. Automatic Attribute Profiles. IEEE Trans.
Image Process. 2017. [CrossRef] [PubMed]

Sumbul, G.; Charfuelan, M.; Demir, B.; Markl, V. Bigearthnet: Large-Scale Benchmark Arch. Remote. Sens.
Image Underst. arXiv 2019, arXiv:1902.06148.

Plaza, A.; Valencia, D.; Plaza, J.; Martinez, P. Commodity cluster-based parallel processing of hyperspectral
imagery. . Parallel Distrib. Comput. 2006. [CrossRef]

Gorgan, D.; Bacu, V.,; Stefanut, T.; Rodila, D.; Mihon, D. Grid based satellite image processing platform
for Earth Observation application development. In Proceedings of the 5th IEEE International Workshop
on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications,
IDAACS’2009, Rende, Italy, 21-23 September 2009. [CrossRef]

Foster, I, Zhao, Y., Raicu, I, Lu, S. Cloud computing and grid computing 360-degree
compared. In Proceedings of the Grid Comput. Environ. Workshop 2008 (GCE ‘08) Austin, TX, USA,
12-16 November 2008; pp. 1-10. [CrossRef]

McKinney, R.; Pallipuram, VXK. Vargas, R; Taufer, M. From HPC performance to climate
modeling: Transforming methods for HPC predictions into models of extreme climate conditions.
In Proceedings of the 11th IEEE International Conference on eScience, eScience 2015, Munich, Germany,
31 August—4 September 2015. [CrossRef]

Yang, Y.; Newsam, S. Bag-of-visual-words and spatial extensions for land-use classification. In Proceedings
of the ACM International Symposium on Advances in Geographic Information Systems, San Jose, CA, USA,
2-5 November 2010. [CrossRef]

Li, J.; Bioucas-Dias, ].M.; Plaza, A. Spectral-spatial classification of hyperspectral data using loopy belief
propagation and active learning. IEEE Trans. Geosci. Remote. Sens. 2013. [CrossRef]

Zou, Q.; Ni, L.; Zhang, T.; Wang, Q. Deep Learning Based Feature Selection for Remote Sensing Scene
Classification. IEEE Geosci. Remote. Sens. Lett. 2015. [CrossRef]

Basu, S.; Ganguly, S.; Mukhopadhyay, S.; DiBiano, R.; Karki, M.; Nemani, R. DeepSat—A learning framework
for satellite imagery. In Proceedings of the ACM International Symposium on Advances in Geographic
Information Systems, Seattle, WD, USA, 3—6 November 2015. [CrossRef]

Zhao, B.; Zhong, Y.; Xia, G.S.; Zhang, L. Dirichlet-derived multiple topic scene classification model for high
spatial resolution remote sensing imagery. IEEE Trans. Geosci. Remote. Sens. 2016. [CrossRef]

Zhao, L.; Tang, P.; Huo, L. Feature significance-based multibag-of-visual-words model for remote sensing
image scene classification. J. Appl. Remote. Sens. 2016, 10, 1-21. [CrossRef]

Penatti, O.A.; Nogueira, K.; Dos Santos, ].A. Do deep features generalize from everyday objects to remote
sensing and aerial scenes domains? In Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition Workshops, Boston, MA, USA, 7-12 June 2015. [CrossRef]



63

Remote Sens. 2019, 11, 3056 18 0of 19

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

Cheng, G.; Han, J.; Lu, X. Remote. Sens. Image Scene Classif. Benchmark State Art. Proc. IEEE 2017,
1865-1883. [CrossRef]

Xia, G.S.; Hu, J.; Hu, F; Shi, B.; Bai, X.; Zhong, Y.; Zhang, L.; Lu, X. AID: A benchmark data set for
performance evaluation of aerial scene classification. IEEE Trans. Geosci. Remote. Sens. 2017. [CrossRef]
Helber, P; Bischke, B.; Dengel, A.; Borth, D. EuroSAT: A Novel Dataset and Deep Learning Benchmark for
Land Use and Land Cover Classification. Comput. Res. Repos. 2017. [CrossRef]

Zhou, W.; Newsam, S.; Li, C.; Shao, Z. PatternNet: A benchmark dataset for performance evaluation of
remote sensing image retrieval. ISPRS |. Photogramm. Remote. Sens. 2018. [CrossRef]

He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of
the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vegas, NV, USA,
27-30 June 2016. [CrossRef]

He, K.; Zhang, X.; Ren, S.; Sun, ]. Identity mappings in deep residual networks. In Proceedings of the
European Conference on Computer Vision, Amsterdam, The Netherlands, 11-14 October 2016; pp. 630-645.
Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.;
Bernstein, M.; others. ImageNet large scale visual recognition challenge. Int. ]. Comput. Vis. 2015,
115,211-252. [CrossRef]

Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks.
In Advances in Neural Information Processing Systems, NIPS Proceedings of the 25th International Conference
on Neural Information Processing Systems, Lake Tahoe, Nevada, NV, USA, 3-6 December 2012; The MIT Press:
London, UK, 2012; pp. 1097-1105.

Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv
2014, arXiv:1409.1556.

Szegedy, C.; Wei, L.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.
Going deeper with convolutions. In Proceedings of the IEEE Conf. Computer Vision and Pattern Recognition
(CVPR), Boston, MA, USA, 7-12 June 2015; pp. 1-9. [CrossRef]

Deng, J.; Dong, W.; Socher, R; Li, L.; Li, K,; Li, E-F.. ImageNet: A large-scale hierarchical image database.
In Proceedings of the IEEE Conf. Computer Vision and Pattern Recognition, Miami, FL, USA, 20-25 June 2009;
pp- 248-255. [CrossRef]

Donahue, J; Jia, Y.; Vinyals, O.; Hoffman, J.; Zhang, N.; Tzeng, E.; Darrell, T. Decaf: A deep convolutional
activation feature for generic visual recognition. In Proceedings of the International Conference on Machine
Learning, Bejing, China, 22-24 June 2014; pp. 647-655.

Razavian, A.S.; Azizpour, H.; Sullivan, J.; Carlsson, S. CNN Features Off-the-Shelf: An Astounding Baseline
for Recognition. In Proceedings of the IEEE Conf. Computer Vision and Pattern Recognition Workshops,
Columbus, OH, USA, 23-28 June 2014; pp. 512-519. [CrossRef]

Kornblith, S.; Shlens, J.; Le, Q.V. Do better imagenet models transfer better? In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Beach, CA, USA, 16-20 Junary 2019; pp. 2661-2671.
Mayer, R.; Jacobsen, H.A. Scalable Deep Learning on Distributed Infrastructures: Challenges, Techniques
and Tools. arXiv 2019, arXiv:1903.11314.

You, Y.; Zhang, Z.; Hsieh, C.; Demmel, J.; Keutzer, K. Fast Deep Neural Network Training on Distributed
Systems and Cloud TPUs. IEEE Trans. Parallel Distrib. Syst. 2019. [CrossRef]

Ying, C.; Kumar, S.; Chen, D.; Wang, T.; Cheng, Y. Image classification at supercomputer scale. arXiv 2018,
arXiv:1811.06992.

Yamazaki, M.; Kasagi, A.; Tabuchi, A.; Honda, T.; Miwa, M.; Fukumoto, N.; Tabaru, T.; Ike, A.; Nakashima, K.
Yet Another Accelerated SGD: ResNet-50 Training on ImageNet in 74.7 seconds. arXiv 2019, arXiv:1903.12650.
Sergeev, A.; Balso, M.D. Horovod: fast and easy distributed deep learning in TensorFlow. arXiv 2018,
arXiv:1802.05799.

Gibiansky, A. Bringing HPC Techniques to Deep Learning. Available online: http://andrew.gibiansky.com/
blog/machine-learning/baidu-allreduce/ (accessed on 1 April 2019).

NVIDIA Collective Communications Library (NCCL). Available online: https://developernvidia.com/nccl
(accessed on 15 October 2019).

TensorFlow Distributed Strategy Documentation. Available online: https://www.tensorflow.org/guide/
distributed_training (accessed on 1 April 2019).



64

APPENDIX A. APPENDED PAPERS

Remote Sens. 2019, 11, 3056 190f19

50. Goyal, P; Dollar, P; Girshick, R.; Noordhuis, P.; Wesolowski, L.; Kyrola, A.; Tulloch, A.; Jia, Y.; He, K.
Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour. arXiv 2017, arXiv:1706.02677.

51. You, Y, Gitman, I; Ginsburg, B. Scaling sgd batch size to 32k for imagenet training. arXiv 2017,
arXiv:1708.03888.

52.  Sentinel2 B10: High Atmospheric Absorption Band. Available online: https://sentinel.esa.int/web/sentinel /
technical-guides/sentinel-2-msi/level-1c/cloud-masks (accessed on 15 May 2019).

53.  Scripts to Remove Cloudy and Snowy Patches Provided by BigEarthNet Archive Creators from the Remote
Sensing Image Analysis (RSiM) Group at the TU Berlin. Available online: http://bigearth.net/ (accessed on
1 April 2019).

54. Jilich Supercomputing Centre. JUWELS: Modular Tier-0/1 Supercomputer at the Jiilich Supercomputing
Centre. J. Large-Scale Res. Facil. 2019, 5. [CrossRef]

55. Jiilich Supercomputing Centre. JURECA: Modular supercomputer at Jiilich Supercomputing Centre.
J. Large-Scale Res. Facil. 2018, 4. [CrossRef]

56. Lanaras, C.; Bioucas-Dias, J.; Galliani, S.; Baltsavias, E.; Schindler, K. Super-resolution of Sentinel-2 images:
Learning a globally applicable deep neural network. ISPRS J. Photogramm. Remote. Sens. 2018. [CrossRef]

57. GDAL/OGR contributors. GDAL/OGR Geospatial Data Abstraction Software Library; Open Source Geospatial
Foundation: Chicago, IL, USA, 2019.

58. The HDF Group. Hierarchical Data Format, Version 5, 1997-NNNN. Available online: http://www.
hdfgroup.org/HDF5/ (accessed on 1 April 2019) .

59. Chaudhuri, B.; Demir, B.; Chaudhuri, S.; Bruzzone, L. Multilabel Remote Sensing Image Retrieval Using a
Semisupervised Graph-Theoretic Method. IEEE Trans. Geosci. Remote. Sens. 2018, 56, 1144-1158. [CrossRef]

60. Read, ].; Pfahringer, B.; Holmes, G.; Frank, E. Classifier Chains for Multi-label Classification. In Machine
Learning and Knowledge Discovery in Databases; Buntine, W., Grobelnik, M., Mladeni¢, D., Shawe-Taylor, J., Eds.;
Springer: Berlin/Heidelberg, Germany, 2009; pp. 254-269.

61. Zhang, H.; Cisse, M.; Dauphin, Y.N.; Lopez-Paz, D. mixup: Beyond Empirical Risk Minimization. arXiv
2017, arXiv:1710.09412.

62. Sutskever, I.; Martens, J.; Dahl, G.; Hinton, G. On the importance of initialization and momentum in deep
learning. In Proceedings of the 30th International Conference on Machine Learning, ICML 2013, Atlanta,
GA, USA, 16-21 June 2013.

63. Bengio, Y. Practical recommendations for gradient-based training of deep architectures. Lect. Notes Comput.
Sci. (Incl. Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinform.) 2012. [CrossRef]

64. Johnson, ].M.; Khoshgoftaar, T.M. Survey on deep learning with class imbalance. J. Big Data 2019. [CrossRef]

65. Buda, M.; Maki, A.; Mazurowski, M.A. A systematic study of the class imbalance problem in convolutional
neural networks. Neural Netw. 2018. [CrossRef]

66. Parikh, N. Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour. Found. Trends Optim. 2014.

[CrossRef]

® (© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution
[

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).



65

Atmos. Meas. Tech., 13, 3661-3682, 2020
https://doi.org/10.5194/amt-13-3661-2020

© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Atmospheric
Measurement
Techniques

Exploration of machine learning methods for the classification of
infrared limb spectra of polar stratospheric clouds

Rocco Sedona'2, Lars Hoffmann', Reinhold Spang?, Gabriele Cavallaro', Sabine Griessbach!, Michael Hopfner®,

Matthias Book2, and Morris Riedel'-2

1Jiilich Supercomputing Centre (JSC), Forschungszentrum Jiilich, Jiilich, Germany

2School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland

3Institut fir Energie- und Klimaforschung (IEK-7), Forschungszentrum Jiilich, Jiilich, Germany
4Institut fir Meteorlogie und Klimaforschung, Karlsruher Institut fiir Technologie, Karlsruhe, Germany

Correspondence: Rocco Sedona (r.sedona@fz-juelich.de)

Received: 10 December 2019 — Discussion started: 30 January 2020
Revised: 20 May 2020 — Accepted: 15 June 2020 — Published: 8 July 2020

Abstract. Polar stratospheric clouds (PSCs) play a key role
in polar ozone depletion in the stratosphere. Improved obser-
vations and continuous monitoring of PSCs can help to val-
idate and improve chemistry—climate models that are used
to predict the evolution of the polar ozone hole. In this pa-
per, we explore the potential of applying machine learning
(ML) methods to classify PSC observations of infrared limb
sounders. Two datasets were considered in this study. The
first dataset is a collection of infrared spectra captured in
Northern Hemisphere winter 2006/2007 and Southern Hemi-
sphere winter 2009 by the Michelson Interferometer for Pas-
sive Atmospheric Sounding (MIPAS) instrument on board
the European Space Agency’s (ESA) Envisat satellite. The
second dataset is the cloud scenario database (CSDB) of sim-
ulated MIPAS spectra. We first performed an initial analysis
to assess the basic characteristics of the CSDB and to decide
which features to extract from it. Here, we focused on an
approach using brightness temperature differences (BTDs).
From both the measured and the simulated infrared spectra,
more than 10000 BTD features were generated. Next, we
assessed the use of ML methods for the reduction of the di-
mensionality of this large feature space using principal com-
ponent analysis (PCA) and kernel principal component anal-
ysis (KPCA) followed by a classification with the support
vector machine (SVM). The random forest (RF) technique,
which embeds the feature selection step, has also been used
as a classifier. All methods were found to be suitable to re-
trieve information on the composition of PSCs. Of these, RF
seems to be the most promising method, being less prone to

overfitting and producing results that agree well with estab-
lished results based on conventional classification methods.

1 Introduction

Polar stratospheric clouds (PSCs) typically form in the po-
lar winter stratosphere between 15 and 30km of altitude.
PSCs can be observed only at high latitudes, as they ex-
ist only at very low temperatures (7' < 195K) found in the
polar vortices. PSCs are known to play an important role
in ozone depletion caused by heterogeneous reactions un-
der cold conditions, while denitrification of the stratosphere
extends the ozone destruction cycles into springtime, as the
absence of NO, limits the deactivation process of the reac-
tive ozone-destroying substances (Solomon, 1999; Salawitch
etal., 1993). The presence of man-made chlorofluorocarbons
(CFCs) in the stratosphere, which have been used for ex-
ample in industrial compounds present in refrigerants, sol-
vents, blowing agents for plastic foam, affects ozone deple-
tion. CFCs are inert compounds in the troposphere but get
transformed under stratospheric conditions to the chlorine
reservoir gases HCI and CIONO,. PSC particles are involved
in the release of chlorine from the reservoirs.

The main constituents of PSCs are three, i.e., nitric acid
trihydrate (NAT), supercooled ternary solution (STS), and
ice (Lowe and MacKenzie, 2008). Michelson Interferometer
for Passive Atmospheric Sounding (MIPAS) measurements
have been used to study PSC processes (Arnone et al., 2012;
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Khosrawi et al., 2018; Tritscher et al., 2019). The infrared
spectra acquired by MIPAS are rather sensitive to optically
thin clouds due to the limb observation geometry. This is par-
ticularly interesting for NAT and STS PSCs, as ice PSCs are
in general optically thicker than NAT and STS (Fromm et al.,
2003). As ice clouds form at a lower temperature than NAT
and STS, they are mainly present in the Antarctic, while their
presence in the Arctic (where the stratospheric temperature
minimum in polar winter is higher) is only notable for ex-
tremely cold winter conditions (e.g., Campbell and Sassen,
2008; Pawson et al., 1995).

Besides using MIPAS measurements, classification has
been carried out with different schemes based on the opti-
cal properties of PSCs by lidar measurements. A review of
those methods is available in Achtert and Tesche (2014).
Classification schemes are based on two features, namely
the backscatter ratio and the depolarization ratio. As exposed
in Biele et al. (2001), particles with large backscatter ratio
and depolarization are likely to be composed of ice (type II).
Type I particles are characterized by a low backscatter ra-
tio. The subtype Ia particles show a large depolarization and
are composed of NAT, whereas subtype Ib particles have low
depolarization and consist of STS. The threshold to classify
the PSC types varies among different works such as Browell
et al. (1990), Toon et al. (1990), Adriani (2004), Pitts et al.
(2009), and Pitts et al. (2011). The nomenclature presented
above is a simplification of real case scenarios, since PSCs
can occur also with mixtures of particles with different com-
position (Pitts et al., 2009). Other methods that are used to
measure PSCs are in situ optical and nonoptical measure-
ments from balloon or aircraft as well as microwave obser-
vations (Buontempo et al., 2009; Molleker et al., 2014; Voigt,
2000; Lambert et al., 2012).

The use of machine learning (ML) algorithms increased
dramatically during the last decade. ML can offer valuable
tools to deal with a variety of problems. In this paper, we used
ML methods for two different tasks: first, for the selection of
informative features from the simulated MIPAS spectra; sec-
ond, to classify the MIPAS spectra depending on the compo-
sition of the PSC. In this work we significantly extended the
application of ML methods for the analysis of MIPAS PSC
observations. Standard methods that exploit infrared limb ob-
servation to classify PSCs are based on empirical approaches.
Given physical knowledge of the properties of the PSC, some
features have been extracted from the spectra, for example
the ratio of the radiances between specific spectral windows.
These approaches have been proven to be capable of detect-
ing and discriminating between different PSC classes (Spang
et al., 2004; Hopfner et al., 2006).

The purpose of this study is to explore the use of ML meth-
ods to improve the PSC classification for infrared limb satel-
lite measurements and to potentially gain more knowledge
on the impact of the different PSC classes on the spectra. We
compare results from the most advanced empirical method,
the Bayesian classifier of Spang et al. (2016), with three au-
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tomatic approaches. The first one relies on principal compo-
nent analysis (PCA) and kernel principal component analy-
sis (KPCA) for feature extraction, followed by classification
with the support vector machine (SVM). The second one is
similar to the first, but uses kernel principal component anal-
ysis (KPCA) for feature extraction instead of PCA. The third
one is based on the random forest (RF), a classifier that di-
rectly embeds a feature selection (Cortes and Vapnik, 1995;
Breiman, 2001; Jolliffe and Cadima, 2016). A common prob-
lem of ML is the lack of annotated data. To overcome this
limitation, we used a synthetic dataset for training and test-
ing, the cloud scenario database (CSDB), especially devel-
oped for MIPAS cloud and PSC analyses (Spang et al., 2012).
As a ground truth for PSC classification is largely missing,
we evaluate the ML results by comparing them with results
from existing methods and show that they are consistent with
established scientific knowledge.

In Sect. 2, we introduce the MIPAS and synthetic CSDB
datasets. A brief description of the ML methods used for fea-
ture reduction and classification is provided in Sect. 3. In
Sect. 4, we compare results of PCA+SVM, KPCA +SVM,
and RF for feature selection and classification. We present
three case studies and statistical analyses for the 2006/2007
Arctic and 2009 Antarctic winter season. The final discussion
and conclusions are given in Sect. 5.

2 Data
2.1 MIPAS

The MIPAS instrument (Fischer et al., 2008) was an infrared
limb emission spectrometer on board the European Space
Agency’s (ESA) Envisat satellite to study the thermal emis-
sion of the Earth’s atmosphere constituents. Envisat operated
from July 2002 to April 2012 in a polar low Earth orbit with
a repeat cycle of 35d. MIPAS measured up to 87°S and
89° N latitude and therefore provided nearly global coverage
at day- and nighttime. The number of orbits of the satellite
per day was equal to 14.3, resulting in a total of about 1000
limb scans per day.

The wavelength range covered by the MIPAS interferom-
eter was about 4 to 15 um. From the beginning of the mis-
sion to spring 2004, the instrument operated in the full reso-
lution (FR) mode (0.025 cm™! spectral sampling). Later on,
this has to be changed to the optimized resolution (OR) mode
(0.0625cm™1) due to a technical problem of the interferom-
eter (Raspollini et al., 2006, 2013). The FR measurements
were taken with a constant 3 km vertical and 550 km hori-
zontal spacing, while for the OR measurements the vertical
sampling depended on altitude, varying from 1.5 to 4.5km,
and a horizontal spacing of 420km was achieved. The al-
titude range of the FR and OR measurements varied from
5-70km at the poles to 12-77 km at the Equator.
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Table 1. Infrared spectral regions considered for PSC classification.

Spectral region  Index range ~ Wavenumber range

(em™h)
R1 0-57 782-840
R2 58-83 940-965
R3 84-98 1224-1250
R4 99-106 1404-1412
R5 107-112 1930-1935
R6 113-125 1972-1985
R7 126-130 2001-2006
R8 131-136 2140-2146
W1 137 788.2-796.2
W2 138 832-834.4
W3 139 819-821
W4 140 832.3-834.4
W5 141 947.5-950

For our analyses, we used MIPAS Level 1B data (ver-
sion 7.11) acquired at 15-30km of altitude between May
and September 2009 at 60-90° S and between November
2006 and February 2007 at 60-90°N. The 2009 South-
ern Hemisphere winter presents a slightly higher than av-
erage PSC activity, especially for ice in June and August.
The 2006/2007 Northern Hemisphere winter is characterized
by a large area covered by NAT, with an exception made
for early January, and some ice is present in late Decem-
ber (this analysis was obtained from NASA Ozone Watch
from their website at https://ozonewatch.gsfc.nasa.gov, last
access: 20 April 2020). The high-resolution MIPAS spec-
tra were averaged to obtain 136 spectral windows of 1cm™!
width, because PSC particles are expected to typically cause
only broader-scale features. The 1 cm~! window data used
in this study comprise the eight spectral regions reported in
Table 1. In addition to these, five windows (W1-W5) larger
than 1cm™! have been considered, as used in the study of
Spang et al. (2016).

From the 1cm™! windows and the five additional larger
windows, more than 10000 brightness temperature differ-
ences (BTDs) were extracted using a two-step preprocessing.
At first, the infrared spectra were converted from radiance
intensities to brightness temperatures (BTs). This approach
is considered helpful, as variations in the signals are more
linear in BT compared to radiances. Then, the BTDs were
computed by subtracting the BT of each window with re-
spect to the remaining ones. The main motivation for using
BTDs rather than BTs for classification is to try to remove
background signals from interfering instrument effects such
as radiometric offsets.

Other wavelength ranges covered by MIPAS have been
excluded here as they are mainly sensitive to the presence
of trace gases. The interference of cloud and trace gas emis-
sions makes it more difficult to analyze the effects of the PSC
particles (Spang et al., 2016). As an example, Fig. 1 shows
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Figure 1. MIPAS measurements in Southern Hemisphere polar
winter at three tangent altitudes from the same profile showing
clear-air (light blue), optically thin (blue), and optically thick (dark
blue) conditions. The gray bars indicate the wavenumber regions
considered for PSC classification in this study.

Table 2. PSC constituents, particle concentrations, and sizes cov-
ered by the CSDB.

PSC Volume density Median radius
constituents (pm3 cm_3) (um)

ice 10, 50, 100 1.0, 2.0, 3.0, 4.0, 5.0, 10.0
NAT 0.1,0.5,1.0,5.0,10.0 0.5, 1.0, 2.0,3.0,4.0,5.0
STS 0.1,0.5,1.0,5.0,10.0 0.1,0.5,1.0

MIPAS spectra of PSC observations acquired in late August
2009 in Southern Hemisphere polar winter conditions, with
the spectral regions used for PSC detection and classification
being highlighted.

2.2 Cloud scenario database

A synthetic dataset consisting of simulated radiances for the
MIPAS instrument provides the training and testing data for
this study. The CSDB was generated by considering more
than 70000 different cloud scenarios (Spang et al., 2012).
The CSDB spectra were generated using the Karlsruhe Opti-
mized and Precise Radiative Transfer Algorithm (KOPRA)
model (Stiller et al., 1998). Limb spectra were simulated
from 12 to 30 km tangent height, with 1 km vertical spacing.
Cloud top heights were varied between 12.5 and 28.5km,
with 0.5 km vertical spacing. The cloud vertical extent varies
between 0.5, 1, 2, 4, and 8 km. The spectral features selected
from the CSDB are the same as those for MIPAS (Sect. 2.1,
Fig. 1).

As described in Spang et al. (2016), the CSDB was calcu-
lated with typical particle radii and volume densities of PSCs
(Table 2). Five different PSC compositions have been con-
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Figure 2. Intercomparison of ML and Bayesian classifiers for Southern Hemisphere winter (May to September 2009). Ticks on the x axis
represent the classes of the BC. The y axis indicates the fraction of the classes as predicted by the KPCA + SVM (a), PCA + SVM classifier
(b), and the RF classifier (¢). N is the number of samples belonging to each class of the Bayesian classifier.

sidered: ice; NAT; STS with 2% H;SOy4, 48 % HNOs3, and
50 % H,O (called later on STS 1); STS with 25 % H,SOy4,
25% HNO3, and 50 % H,O (STS 2); and STS with 48 %
H,S04, 2% HNO3, and 50 % H,O (STS 3). These values
are derived from the model by Carslaw et al. (1995) and
span over all possible compositions. The CSDB does not
give any representative frequency of real occurrences in the
atmosphere. For this study, we decided to split the set of
NAT spectra into two classes, large NAT (radius > 2um) and
small NAT (radius <=2 um). This decision was taken to as-
sess the capability of the classifiers to correctly separate be-
tween the two classes. It is well known that small NAT parti-
cles (radius <= 2 pum) produce a specific spectral signature at
820cm™! (Spang and Remedios, 2003; Hopfner et al., 2006).
Spectra for large NAT particles are more prone to overlap
with those of ice and STS.

To prepare both the real MIPAS and the CSDB data for
PSC classification, we applied the cloud index (CI) method
of Spang et al. (2004) with a threshold of 4.5 to filter
out clear-air spectra. In optimal conditions a CI <6 de-
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tects clouds with extinction coefficients down to about 2 x
10~5km~! in the midinfrared (Sembhi et al., 2012). How-
ever, in the polar winter regions these optimal conditions
do not persist over an entire winter season. Hence, we se-
lected a threshold of 4.5 that reliably discriminates clear air
from cloudy air in the Southern and Northern Hemisphere
polar winter regions as it is sensitive to extinctions down to
5 x 10~*km~! (Griessbach et al., 2020).

3 Methods
3.1 Conventional classification methods

Spang et al. (2016) provide an overview on various conven-
tional methods used to classify Envisat MIPAS PSC observa-
tions. Furthermore, a Bayesian approach has been introduced
in their study to combine the results of individual classifica-
tion methods. This approach is used as a benchmark for the
new classifiers introduced in the present paper. The Bayesian
classifier considers a total of 13 features, including corre-
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Figure 3. (a) Flowchart of the training process and (b) prediction. “F.e.” stands for feature extraction.

lations between the cloud index (CI) (Spang et al., 2004),
the NAT index (NI) (Spang and Remedios, 2003; Hopfner
et al., 2006), and another five additional BTDs. Each feature
has been assigned individual probabilities p; ; in order to
discriminate between the different PSC composition classes.
The output of the Bayesian classifier is calculated according
to Pj =[T;pi;/2; (IT;pi,;), where the indices i =1, ...,
13 and j =1, 2, 3 refer to the individual feature and the PSC
constituent, respectively. The normalized probabilities P; per
PSC constituent are used for final classification applying the
maximum a posteriori principle. The BC composition classes
are the following: unknown, ice, NAT, STS_mix, ICE_NAT,
NAT_STS, and ICE_STS. A stepwise decision criterion is
applied to classify each spectrum. If the maximum of P;
(with j =1...3) is greater than 50 %, then the spectrum is
assigned a single PSC composition label. If two P; values
are between 40 % and 50 %, then a mixed composition class,
for example ICE_STS for j =1 and j = 3, is attributed. If
the classification results in P1, P2, or P3 < 40 %, then the
spectrum is labeled as “unknown”. Considering the South-
ern Hemisphere 2009 case, the NAT_STS mixed composi-
tion class is populated with more than 4000 spectra, while
ICE_STS and ICE_NAT predictions are negligible (Fig. 2).
The analysis of the complete MIPAS period (9 Southern
Hemisphere and 10 Northern Hemisphere winters in Spang
et al., 2018) showed that ICE_STS and ICE_NAT classes are
generally only in the subpercentage range and statistically
not relevant. The Bayesian classifier requires a priori infor-
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mation and detailed expert knowledge on the selection of the
features to be used as discriminators and in assigning the in-
dividual probabilities p; ; for classification. In this work, we
aim at investigating automatic ML approaches instead of the
manual or empirical methods applied for the Bayesian clas-
sifier. Nevertheless, being carefully designed and evaluated,
the results of the Bayesian classifier are used for further ref-
erence and comparison in this study.

3.2 Feature extraction using PCA and KPCA

In a first step, we calculated BTDs from the lem™! down-
sampled radiances of the CSDB. Calculating the BTDs be-
tween the 142 spectral windows resulted in 10011 BTDs
for a total of 70000 spectra. In a second step, in order to
reduce the number of data, we applied a variance thresh-
old to exclude BTD features with relatively low variance
(02 < 10K?), as this indicates that the corresponding win-
dows have rather similar information content. In order to fur-
ther reduce the difficulties and complexity of the classifica-
tion task, we decided to even further reduce the number of
BTD features before training of the classifiers by means of
feature extraction.

Feature selection methods are used for picking subsets of
an entire set of features while keeping the information con-
tent as high as possible. The methods help to reduce the
training time of the classifier and to reduce the risk of over-
fitting. Feature selection methods typically belong to three

Atmos. Meas. Tech., 13, 3661-3682, 2020
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Figure 4. Variance of normalized BTDs (a) and feature importance
as estimated by the RF classifier (b). The BT index numbers on the
x and y axis correspond to the spectral regions as listed in Table 1.

main families (Bolon-Canedo et al., 2016): (i) filter methods,
where the importance of the feature is derived from intrinsic
characteristics of it; (i) wrapper methods, where the features
are selected by optimizing the performances of a classifier;
and (iii) embedded methods, where classification and selec-
tion happen at the same time. Here, we used a more advanced
approach to dimensionality reduction, which goes under the
name of feature extraction. In this case, instead of simply se-
lecting a subset of the original features, the set of features it-
self is transformed to another space where the selection takes
place.

Principal component analysis (PCA) is among the most
popular feature extraction methods (Jolliffe and Cadima,
2016). The main idea of the PCA is to reproject the data to
a space where the features are ranked on the variance that
they account for. At first a centering of the data through the
subtraction of the mean is performed. Then, the covariance
matrix is calculated and its eigenvectors and eigenvalues are
computed. At this point, selecting the eigenvectors whose
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Figure 5. Correlations of the first two principal components from
the PCA (a) and KPCA (b) analysis applied to the CSDB.

eigenvalues are largest, it is possible to pick the components
on which most of the variance of the data lays. PCA already
found applications in the analysis of atmospheric midinfrared
spectra, in particular for the compression of high-resolution
spectra and for accelerating radiative transfer calculations
(e.g., Huang and Antonelli, 2001; Dudhia et al., 2002; Fau-
vel et al., 2009; Estornell et al., 2013). PCA has been used in
this study for two main purposes, dimensionality reduction
and visualization of the data.

Kernel PCA (KPCA) is an extension of the PCA where the
original data x are first transformed using a mapping func-
tion ¢(x) to a higher dimensional feature space. The main
advantage of using KPCA relies in the fact that it can capture
nonlinear patterns, which PCA, being a linear method, may
fail to represent well. However the construction of the kernel
matrix K for mapping can be expensive in terms of mem-
ory. This latter problem undermines severely the possibility
of using this algorithm for large datasets. At this point the
kernel trick comes into play (Scholkopf et al., 1997). It helps
to avoid the inconvenience of having to compute the covari-
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ance matrix in a large transformed space. Instead of translat-
ing each data point to the transformed feature space using the
mapping function ¢ (x), the inner product can be calculated
as K (x;,X;) = ¢(x;)¢(X;), resulting in a much less demand-
ing computational task. Among the most common kernels are
the radial basis function (RBF) and the polynomial (Genton,
2002), which we also considered in this study.

3.3 Classification using support vector machines and
random forests

Supervised classification is a ML task in which the classes or
labels of unknown samples are predicted by making use of
alarge dataset of samples with already known labels. In order
to do that, the classification algorithm first has to be trained;
i.e., it has to learn a map from the input data to its target val-
ues. After a classifier is trained, one can give it as input an
unlabeled set of data points with the aim of predicting the
labels. The training of a classifier is usually a computation-
ally demanding task. However, the classification of unknown
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late the behavior of the human brain by stacking a number
of layers composed of artificial neurons (Zeiler and Fergus,
2014). According to the “no free lunch” theorem, it is not
possible to state safely which algorithm is expected to per-
form best for any problem (Wolpert, 1996). In this study, we
selected two well-established methods, RFs and SVMs, to
test their performance.

Random forest is an algorithm that learns a classification
model by building a set of decision trees. A decision tree is
composed of decision nodes, which lead to further branches
and leaf nodes, which finally represent classification results.
RFs are nonparametric models that do not assume any un-
derlying distribution in the data (Breiman, 2001). RF builds
a number of decision trees selecting a random subset of the
original features for each tree. In this way the model becomes
more robust against overfitting. The classification result of
the RF model will be the label of the class that has been voted
for by the majority of decision trees (Liu et al., 2012). An in-
teresting characteristic of the RF classifier is that it can give
by calculating the Gini index (Ceriani and Verme, 2012) also
a measure of the feature importance. In this way, the RF clas-
sifier can also be exploited for performing feature selection.

The performance of a RF classification model depends on
a number of hyperparameters, which must be defined before
training. (i) The “number of estimators” or decision trees of
the forest needs to be defined. (ii) A random subset of the
features is selected by each decision tree to split a node. The
dimension of the subset is controlled by the hyperparameter
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Figure 8. MIPAS observations of PSCs on 14 June 2009 in the Southern Hemisphere at tangent altitudes between 18 and 22km. The
classification was performed with (a) the Bayesian classifier, (b) the SVM based on PCA features, (c) the SVM based on KPCA features,

and (d) the RF classifier.

“maximum number of features”. (iii) The “maximum depth”,
i.e., the maximum number of levels in each decision tree,
controls the complexity of the decision trees. In fact, the
deeper a decision tree is, the more splits can take place in
it. (iv) The “minimum number of samples before split” that
has to be present in a node before it can be split also needs
to be defined. (v) A node without a further split has to con-
tain a “minimum number of samples per leaf” to exist. (vi)
Finally, we have to decide whether to use “bootstrapping”
or not. Bootstrapping is a method used to select a subset of
the available data points, introducing further randomness to
increase robustness (Probst et al., 2019).

SVMs became popular around the 1990s (Cortes and Vap-
nik, 1995). The method is based on the idea of identifying
hyperplanes, which best separate sets of data points into two
classes. In particular, SVM aims at maximizing the margin,
which is the distance between few points of the data, referred
to as “support vectors”, and the hyperplane that separates the
two classes. The “soft margin” optimization technique takes
into account the fact that misclassification can occur due to
outliers. For that reason a tuning parameter C is included
in order to allow for the presence of misclassified samples
during the optimization of the margin to a given extent. The
choice of the parameter C is a trade-off between minimizing
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the error on the training data and finding a hyperplane that
may generalize better (Brereton and Lloyd, 2010).

SVM had been originally developed to find linear deci-
sion boundaries. However, the introduction of the kernel trick
(cf., Sect. 3.2) enables the possibility for nonlinear decision
boundaries. Kernel functions, e.g., radial basis functions or
polynomials, are mapping from the original space to a non-
linearly transformed space, where the linear SVM is applied
(Patle and Chouhan, 2013). In the case of a nonlinear kernel,
the parameter y is used to define how much a support vec-
tor has influence on deciding the class of a sample. A small
value of y implies that this support vector also has impact on
samples far in the feature space, and a large value of y has an
influence only on samples that are close in the feature space.

We recap in Fig. 3 the entire pipeline for training and
prediction. The BTDs extracted from the CSDB dataset are
given as input to the PCA or KPCA methods, and the ex-
tracted features are fed to the SVM classifier for model train-
ing (PCA +SVM and KPCA + SVM). On the other hand, the
RF classifier is given as input BTDs directly, without prior
feature extraction. The input samples (BTDs) are annotated
with a label as explained in Sect. 2.2. In prediction (Fig. 3b),
the BTDs extracted from the MIPAS measurements are the
input to the three methods PCA + SVM, KPCA + SVM, and
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Figure 9. Same as Fig. 8 but for 26 August 2009.

RF, where the outputs are the predicted label for each sam-
ple. The RF classifier provides a feature importance measure
as well. During prediction, the sample is assigned to one of
the following classes representing the main constituent: ice,
small NAT, large NAT, STS 1, STS 2, and STS 3. Compared
to the NAT class of the Bayesian classifier, in the proposed
ML methods NAT particles are assigned to small and large
NAT subclasses. The STS_mix class of the BC overlaps with
STS 1, STS 2, and STS 3. There are no directly correspond-
ing classes to the mixed composition ones of the BC. As dis-
cussed above in the text, only a few spectra are classified by
the BC as ICE_STS or ICE_NAT. Samples belonging to the
NAT_STS class of the BC, characterized by a non-negligible
population, are labeled by the new ML classes mostly as STS
1 (Fig. 2).

4 Results

4.1 Feature extraction

In this study, we applied PCA and KPCA for feature extrac-
tion from a large set of BTDs. Both PCA and KPCA are re-
projecting the original BTD features to a new space, where
the eigenvectors are ordered in such a way that they max-
imize variance contributions of the data. Figure 4a shows
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a matrix of the normalized variances of the individual BTDs
considered here. The matrices in Fig. 4 are symmetric; thus
the reader can either focus on the location (i.e., the indices
of the BTs from which the BTD feature has been computed)
of the maximum values in the upper or lower triangular part.
A closer inspection shows that the largest variances originate
from BTDs in the range from 820 to 840cm™! (indicated
as spectral region R1 in Table 1) and 956 to 964 cm~! (R2).
BTDs close to 790 cm™! (R1, BT index ~ 10) also show high
variance. Another region with high variances originates from
BTDs between 820 and 840 cm™! (part of R1) and between
1404 and 1412 cm™! (R4) as well as between 1930 and 1935
cm~! (R5). Around 820, 1408, and 1930cm™! the imagi-
nary part (absorption contribution) of the complex refractive
index of NAT has pronounced features (Hopfner et al., 2006),
whereas around 960 cm™! the real part (scattering contribu-
tion) of the complex refractive index of ice has a pronounced
minimum (e.g., Griessbach et al., 2016). Even though in our
work the ML classifiers are given BTDs (computed from ra-
diance) as input and refractive indices are not directly used
in the classification process, the latter can provide insights on
microphysical properties of the different PSC particles and
additional information on the features used by the ML meth-
ods.

Atmos. Meas. Tech., 13, 3661-3682, 2020



74

APPENDIX A. APPENDED PAPERS

3670 R. Sedona et al.: Machine learning methods for PSC classification

Table 3. Top ten list of BTDs providing maximum feature impor-
tance as estimated by the RF classifier.

Feature BTD BTD wave-
importance indices  numbers (cm™ 1 )
0.006815 85-105 1225.5-1410.5
0.005798 61-83 942.5-964.5
0.004334 57-76 839.5-957.5
0.003233 37-56 819.5-838.5
0.002649 86-139 1226.5-820
0.002633 58-139 840.5-820
0.002272 40-87 822.5-1227.5
0.001677 26-139 808.5-820
0.001592 27-101 809.5-1406.5
0.001033 102-137 1407.5-792.2

The first and second principal components, which capture
most of the variance in the data, are shown in Fig. 5. Com-
paring PCA and KPCA, we note that they mostly differ in
terms of order and amplitude. This means that the eigenval-
ues change, but the eigenvectors are rather similar in the lin-
ear and nonlinear case. For this dataset, the nonlinear KPCA
method (using a polynomial kernel) does not seem to be very
sensitive to nonlinear patterns that are hidden to the linear
PCA method. However, it should be noted that the SVM clas-
sifier is sensitive to differences in scaling of the input features
as they result from the use of PCA and KPCA for feature se-
lection. Therefore, classification results of PCA +SVM and
KPCA + SVM can still be expected to differ and are tested
separately.

As discussed in Sect. 3.3, RF itself is considered to be an
effective tool not only for classification but also for feature
selection. It is capable of finding nonlinear decision bound-
aries to separate between the classes. However, the method
does not group the features together in components like PCA
or KPCA. It is rather delivering a measure of importance of
all of the individual features. Figure 4b shows the feature im-
portance matrix provided by the RF. Note that the values are
normalized; i.e., the feature importance values of the upper
triangular matrix sum up to 1. We can observe that this ap-
proach highlights clusters similar to Fig. 4a.

Similarly to PCA and KPCA, BTDs between windows
in the range from 820 to 840cm~! (R1) and from 956 to
964 cm™! (R2) are considered to be important by the RF al-
gorithm. BTDs between 1224 and 1250 cm™! (R3) and be-
tween 1404 and 1412cm~! (R4) are also regarded as im-
portant. The importance of the RF features located in this
cluster is in contrast with the relatively low BTD variance
in the same area. A similar observation can be done regard-
ing BTDs between 782 and 800 cm™! and between 810 and
820cm™! (both belonging to R1). This region is in the range
of values of the NAT feature, providing a possible expla-
nation of the capability of the RF to detect the characteris-
tic peak of small NAT as well as its shift with the increase
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in the radius. BTDs between 960cm™! (R2) and 1404 to
1412 cm™! (R4) are also quite important. Table 3 specifically
provides the most important BTDs between the different re-
gions. Actually, Fig. 6 shows that all the windows or BTDs
found here by the RF are associated with physical features of
the PSC spectra, namely a peak in the real and imaginary part
of the complex refractive index of NAT around 820 cm~! or
aminimum in the real part of the complex refractive index of
ice around 960 cm™!. STS can be identified based on the ab-
sence of these features. Considering the larger windows W,
the matrices of the variance and of the RF feature importance
seem to agree, with the exception of W3 (~ 820cm™!) that
is regarded as important by the RF scheme but is not charac-
terized by high variance, confirming the capability of the RF
for detecting the NAT feature.

A closer inspection reveals an interesting difference be-
tween PCA and KPCA on the one hand and RF on the other
hand. Two additionally identified windows around ~ 790
(BT index ~ 10) and ~ 1235cm™! (BT index ~ 90) are lo-
cated at features in the imaginary part of the refractive index
of ice and NAT, respectively (Hopfner et al., 2006). This lat-
ter set of BTDs is considered to have a large feature impor-
tance by the RF method but does not show a particularly large
variance. This suggests that a supervised method like RF can
capture important features where unsupervised methods like
PCA and KPCA may fail.

4.2 Hyperparameter tuning and cross-validation
accuracy

Concerning classification, we compared two SVM-based
classifiers that take as input the features from PCA and
KPCA and the RF that uses the BTD features without prior
feature selection. The first step in applying the classifiers is
training and tuning of the hyperparameters. Cross validation
is a standard method to find optimal hyperparameters and to
validate a ML model (Kohavi, 1995). For cross validation
the dataset is split into a number of subsets, called folds. The
model is trained on all the folds, except for one, which is
used for testing. This procedure is repeated until the model
has been tested on all the folds. The cross-validation accu-
racy refers to the mean error of the classification results for
the testing datasets. Cross validation is considered essential
to avoid overfitting while training a ML model. Selecting the
best hyperparameters that maximize the cross-validation ac-
curacy of a ML model is of great importance to exploit the
models’ capabilities at a maximum.

In this study, we applied 5-fold cross validation on the
CSDB dataset. For the SVM models we decided to utilize
a grid-search approach to find the hyperparameters. As the
parameter space of the RF model is much larger, a random-
search approach was adopted (Bergstra and Bengio, 2012).
The test values and optimum values of the hyperparameters
for the SVM and RF classifiers are reported in Tables 4 and
5, respectively. For the optimum hyperparameter values, all
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Table 4. Hyperparameter choices considered for the SVM classifier.

Hyperparameter ~ Test values

Optimal value

Kernel linear, RBF, polynomial RBF
C 1, 10, 100, 1000 1000
y 0.0001, 0.001, 0.01, 0.1, 1, 10 1 (PCA)/ 10 (KPCA)

Table 5. Hyperparameter choices considered for the RF classifier.

Hyperparameter

Test values Optimal value

Number of estimators
Maximum number of features
Maximum depth

Minimum number of samples before split

Minimum number of samples per leaf
Bootstrapping

200, 210, ...,2000 1000

auto, sqrt auto
10, 20, ..., 110 50
2,5,10 2
1,2,4 1
true, false false

Table 6. Scores of the RF classifier on a small subset of CSDB
samples.

Class Precision  Recall ~FI score  Support
Ice 1.00 1.00 1.00 56
NAT _large 1.00 0.91 0.95 23
NAT_small 1.00 1.00 1.00 33
STS_1 0.96 0.76 0.85 34
STS_2 0.78 0.97 0.86 33
STS_3 0.94 0.97 0.96 34
Total 0.95 0.94 0.94 210

classification methods provided an overall prediction accu-
racy close to 99 %. Also, our tests showed that the ML meth-
ods considered here for the PSC classification problem are
rather robust against changes in the hyperparameters.

During the training of the classifiers, we conducted two
experiments. In the first experiment, we checked how large
the amount of synthetic samples from the CSDB needs to be
in order to obtain good cross-validation accuracy. For this ex-
periment, we performed the training with subsets of the orig-
inal CSDB data, using randomly sampled fractions of 50 %,
20 %, 10 %, 5 %, 2 %, 1 %, 0.05 %, 0.02 %, 0.01 %, 0.005 %,
0.002 %, and 0.001 % of the full dataset. This experiment was
run for all three ML models (PCA +SVM, KPCA +SVM,
and RF) using the optimal hyperparameters found during the
cross-validation step. The results in Fig. 7 show that using
even substantially smaller datasets (> 0.02 % of the original
data or about 1200 samples) would still result in acceptable
prediction accuracy (> 80%). This result is surprising and
points to a potential limitation of the CSDB for the purpose
of training ML models that will be discussed in more detail
in Sect. 5.
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In the second experiment, we intentionally performed and
analyzed the training and testing of the RF method with
a rather small subset of data. Although the results from this
procedure are less robust, they can help pinpoint potential is-
sues that cannot be detected using the full dataset. We com-
puted different scores to assess the quality of the predic-
tion for the RF classifier in the case of 600 randomly se-
lected samples used for training and around 200 samples
used for testing. As shown in Table 6, also using a limited
number of samples for training leads to very high classifi-
cation accuracy. The metrics used in Table 6 are precision
P =TP/(TP+FP), recall R = TP/(TP + FN), and F1 score
F1=2(RxP)/(R+P), where TP is the number of true pos-
itives, FP the number of false positives, FN the number of
false negatives, and support is the number of samples (Thar-
wat, 2018). As reported in Table 6, it is found that ice and
small NAT accuracies are higher than the ones of STS. This is
a hint to the fact that distinguishing small NAT and ice from
the other classes is an easier task than separating spectra of
PSCs containing larger NAT particles from those populated
with STS, which is consistent with previous studies (Hpfner
et al., 2009).

An additional experiment was performed on the CSDB
spectra labeled as large NAT. The BC misclassifies a large
amount of those spectra (99% of them classified as
STS_mix), whereas the proposed ML methods correctly
classify them as large NAT (Table 7). This experiment sug-
gests that the new classification schemes can help in over-
coming the inability of the BC in discriminating between
large NAT and STS.
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Table 7. Predicted labels vs. CSDB classes, with analysis restricted to NAT large (radius >2 um).

NAT large, CSDB

BC class Pred. by BC  Proposed ML class  Pred. by PCA+SVM  Pred. by KPCA+SVM  Pred. by RF
ICE 0 ICE 0 0 0
NAT 0.0012 NAT_small 0 0 0
NAT_large 1 1 1
STS_mix 0.9988 STS_1 0 0 0
STS_2 0 0 0
STS_3 0 0 0
NAT \ STS 0
ICE \ NAT 0
ICE \ STS 0

(@)

O Unspec.

m ICE

& NAT
STSmix
ICE_NAT
NAT 5TS

b ICESTS

()

KPCA+SVM

m ICE

& NAT large
STS_1
5752
5753

# NAT small
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m ICE

& NAT large
5151
515 2
575 3
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m ICE
A NAT large

* N.Q'F_s mall

Figure 10. Same as Fig. 8 but for 25 January 2007 and the Northern Hemisphere.

4.3 Classification using real MIPAS data
4.3.1 Case studies

For three case studies looking at individual days of MIPAS
observations, two in the Southern Hemisphere and one in the
Northern Hemisphere winter season, we compared the results
of the different classification methods (Figs. 8 to 10). Early
in the Southern Hemisphere PSC season, on 14 June 2009

Atmos. Meas. Tech., 13, 3661-3682, 2020

(Fig. 8), we found that the classification results are mostly co-
herent among all the classifiers, not only from a quantitative
point of view but also geographically, especially concern-
ing the separation of ice and STS PSCs. Further, we found
that most of the PSCs, which were labeled as NAT by the
Bayesian classifier, were classified as STS by the ML clas-
sification methods. While both SVM classification schemes
did not indicate the presence of NAT, the RF found some
NAT, but mostly at different places than the Bayesian classi-
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Figure 11. Area covered by STS clouds from May to September 2009 in the Southern Hemisphere based on results of (a) the Bayesian
classifier, (b) the PCA + SVM classifier, (¢) the KPCA + SVM classifier, and (d) the RF classifier. The bins span a length of 1d in time and
1 km in altitude. A horizontal (3 d) and vertical (3 km) moving average has been applied for the sake of a smoother representation.

fier. Note that from a climatological point of view, NAT PSCs
are not expected to be the dominant PSC type until the mid-
dle to end of June for the Southern Hemisphere (Pitts et al.,
2018).

Later in the Southern Hemisphere PSC season, on 26 Au-
gust 2009 (Fig. 9), it is again found that the separation be-
tween ice and nonice PSCs is largely consistent for all the
classifiers. The NAT predictions by the RF classifier tend to
agree better with the Bayesian classifier than the NAT clas-
sifications by the SVM method. Overall, the Southern Hemi-
sphere case studies seem to suggest that the SVM classifiers
(using PCA or KPCA) underestimate the presence of NAT
PSCs compared to the BC and the RF classifiers. We note
that separating the NAT and STS classes from limb infrared
spectra presents some difficulties.

As a third case study, we analyzed classification results
for 25 January 2007 for the Northern Hemisphere (Fig. 10).
This case was already analyzed to some extent by Hoffmann
et al. (2017). It is considered to be particularly interesting, as
ice PSCs have been detected over Scandinavia at synoptic-
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scale temperatures well above the frost point. Hoffmann et al.
(2017) provided evidence that the PSC formation in this case
was triggered by orographic gravity waves over the Scandi-
navian Mountains. Also in this case study the classification of
ice PSCs over Scandinavia shows a good agreement for the
new ML methods with the Bayesian classifier. Further, we
see that the two SVM and the RF methods identified small
NAT where the Bayesian classifier also found NAT. How-
ever, at the locations where the Bayesian classifier indicates
a mixture of NAT and STS, the ML methods indicate STS,
and the ML methods indicate large NAT at locations where
the Bayesian classifier found STS.

4.3.2 Seasonal analyses

For a seasonal analysis, we first considered MIPAS observa-
tions during the months from May to September 2009. Fig-
ures 11 to 13 show the area coverage for each class of PSC
along time and altitude. Comparing the time series of the
classification results, we can assess the agreement quantita-

Atmos. Meas. Tech., 13, 3661-3682, 2020



78

APPENDIX A. APPENDED PAPERS

3674 R. Sedona et al.: Machine learning methods for PSC classification

Area coverad of PSC type |28 Ay [10°km”), Bayesian ¢l
(a) 0

T 160.0
1300
100.0
7
I 0.0
50.0
0.0

30
EL)
n
15 10

1 g3 y
ﬁs\. db'“ P

16"“10“‘10“"1&*’1@’“1@1@"10““

-4

Altitude [km]

n.
M

Area covered of PSC type ce Ay [10%km?], KPCA SWM

(c) 0 160.0
I'l 120.0
. 100.0

0.0

150.0

E M 300

g (200

in

110.0
7.0
50
30
20
15 10

3 i 3 1 e A ]
o e @.0 05:1' gv at L&D o A ﬁg.\

T o e o

Figure 12. Same as Fig. 11 but for ice.

tively. The mixed composition classes of the Bayesian clas-
sifier (NAT_STS, ICE_STS, and ICE_NAT) are not consid-
ered in this analysis. Taking a look at STS (Fig. 11), all the
classifiers predict an early season appearance. While the RF
predicts a time series that resembles quite closely the one
predicted by the Bayesian classifier, the other two ML meth-
ods (PCA +SVM and KPCA 4+ SVM) predict a significantly
larger coverage of STS clouds over the winter. Regarding the
ice PSCs (Fig. 12), the patterns in the time series are sim-
ilar between all classifiers. However, we can observe that,
even if the spatiotemporal characteristics are similar, both
SVM methods predict a notably larger area covered by ice
clouds. Moreover, the KPCA +SVM classifier predicts an
earlier emergence of ice with respect to the other classifiers.
Considering the NAT time series (Fig. 13), all the classifiers
predict a late appearance during the season. The classifica-
tion schemes based on SVM predict a much lower presence
of NAT with respect to the RF and the Bayesian classifier.
Furthermore, most of the bins with a high value of NAT cov-
erage in the Bayesian classification scheme are predicted as
small NAT particles. This result confirms that the spectral
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features of small NAT are strong enough to find a good deci-
sion boundary, as explained in Sect. 2.2.

Figure 14 shows the overall percentages of the PSC classes
for May to September 2009 for the Southern Hemisphere.
The occurrence frequencies of ice PSCs are quite consis-
tent, ranging from 32 % for the Bayesian classifier to 39 %
for KPCA 4+ SVM. It is found that the approaches based on
SVM slightly overestimate the presence of ice with respect
to the RF (35 %) and the Bayesian classifier. However, the
main differences that were encountered are in the separation
between STS and NAT. The two classification schemes us-
ing SVM predict a much smaller amount of NAT PSCs (17
and 26 % taking small and large NAT together) compared to
the RF (33 % considering only small NAT, 37 % taking small
and large NAT together) and the Bayesian classifier (32 %
NAT). The RF and the Bayesian classifier are more coherent
between themselves. Other interesting findings are related to
the classification between small and large NAT. Indeed, the
vast majority of the NAT predictions in the KPCA+SVM
and RF methods belong to the small NAT class. PCA+SVM
diverges significantly from the other methods, largely under-
estimating small NAT and overestimating large NAT. This
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Figure 13. Same as Fig. 11 but for NAT.

suggests once more that the discrimination between small
NAT and STS PSCs is more easily possible using midinfrared
spectra for classification, while larger NAT PSCs are harder
to separate.

In addition to the results presented above, we conducted
the seasonal analyses also for MIPAS observations acquired
in the months from November 2006 to February 2007 in the
Northern Hemisphere (Fig. 15). As expected, a much smaller
fraction of ice PSCs (4-6 %) was found compared to the
Southern Hemisphere. As in the Southern Hemisphere win-
ter, the SVM classifiers taking as input the PCA and KPCA
features found significantly less NAT (both 6 %) than the
Bayesian classifier (15 %), whereas the RF classifier iden-
tified a significantly larger fraction of large NAT spectra
(30 %) that resulted in a significantly higher NAT detection
rate (37 %). This finding may point to a potential improve-
ment of the RF classifier compared to the Bayesian classifier.
In fact, it had been already reported by Spang et al. (2016)
that the Bayesian classifier for MIPAS underestimated the
fraction of NAT clouds compared to Cloud-Aerosol Lidar
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with Orthogonal Polarization (CALIOP) observations. Fur-
ther, the STS partitioning between the three STS subclasses
is different between the Southern and Northern Hemisphere
winters. While in the Southern Hemisphere STS 1 is dom-
inant, in the Northern Hemisphere STS 2 is dominant and
the fraction of STS 3 is significantly increased. This re-
sult is plausible, because the Northern Hemisphere winters
are warmer than the Southern Hemisphere winters, and STS
1 forms at lower temperatures (e.g., ~ 189 K) than STS 2
(~192K) and STS 3 (~ 195K at 50hPa, Carslaw et al.,
1995).

Figures 16 and 2 show cross tabulations between the clas-
sification results of the Bayesian classifier and the three ML
methods. They allow us to directly assess how much the dif-
ferent classification schemes agree in terms of their predic-
tions for the different classes. For instance, considering the
ice class of the PCA + SVM and KPCA + SVM classifiers, it
can be seen that around 80 % of the samples were classified
consistently with the Bayesian method, while this percent-
age is above 90 % for the RF (Fig. 16). Concerning NAT, the
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Figure 14. Partitioning of the PSC composition classes for the Southern Hemisphere winter (May to September 2009) derived by (a) the
Bayesian classifier, (b) the PCA + SVM classifier, (c¢) the KPCA + SVM classifier, and (d) the RF classifier. Percentage values and number

of events are reported in the legends.

RF classifier predicts as small NAT more than 80 % of what
had been classified as NAT class by the Bayesian classifier
(Fig. 2). The PCA+SVM and KPCA + SVM methods pre-
dict a smaller fraction of small NAT for the NAT class of
the Bayesian classifier, around 30 % and 70 %, respectively.
The PCA + SVM in particular predicts a significantly smaller
amount of samples belonging to the small NAT class than
the other methods (Fig. 16), while it predicts a larger number
of samples of the STS subclasses. This result may suggest
that PCA 4+ SVM and KPCA +SVM are not as sensitive as
BC for small NAT detection, while RF is. Considering the
STS subclasses of the RF and KPCA 4 SVM classifiers alto-
gether, they seem to mostly agree with the STS_mix predic-
tions of the Bayesian classifier. On the other hand, the total
number of samples predicted by the PCA 4+ SVM scheme as
belonging to the STS subclasses is notably larger than the
predictions of the Bayesian classifier (Fig. 16). This finding
is in line with what has been discussed a few lines above and
in Sect. 4.3.2. There is a large percentage of spectra predicted
as large NAT by the proposed ML methods that are instead
classified as STS by the BC, especially in the results of the
RF scheme. This is probably caused by the fact that the BC
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misclassifies spectra of large NAT, as discussed in Sect. 4.2
for the CSDB.

5 Summary and conclusions

In this study, we investigated whether ML methods can be
applied for the PSC classification of infrared limb spectra.
We compared the classification results obtained by three dif-
ferent ML methods — PCA +SVM, KPCA 4+ SVM, and RF
— with those of the Bayesian classifier introduced by Spang
et al. (2016). First, we discussed PCA, KPCA, and RF as
methods for feature extraction from midinfrared spectral re-
gions and showed that the selected features correspond with
distinct features in the complex refractive indices of NAT and
ice PSCs. Then we compared classification results obtained
by the ML methods with respect to previous work using con-
ventional classification methods combined with a Bayesian
approach.

We presented three case studies as well as seasonal anal-
yses for the validation and comparison of the classification
results. Based on the case studies, we showed that there is
spatial agreement of the ML method predictions between ice
and nonice PSCs. However, there is some disagreement be-
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Figure 15. Same as Fig. 14 but for November 2006 to February 2007 for the Northern Hemisphere.

tween NAT and STS. We evaluated time series and pie charts
of cloud coverage for the Southern Hemisphere polar winter
2009 and the Northern Hemisphere polar winter 2006/2007,
showing that all methods are highly consistent with respect
to the classification of ice. For the NAT and STS predictions,
RF and the Bayesian classifier tend to agree best, whereas the
SVM methods yielded larger differences. The agreement be-
tween the different classification schemes was further quan-
tified by means of cross tabulation. While the SVM meth-
ods found significantly less NAT than the Bayesian classifier,
the RF classifier found slightly more NAT than the Bayesian
classifier. The RF results might be more realistic, because
the Bayesian classifier is known to find less NAT for MIPAS
compared to CALIOP satellite observations, especially for
Northern Hemisphere winter conditions (Spang et al., 2016).
A practical advantage of RF, presented in Sect. 3.3 and fur-
ther discussed in Sect. 4.1, is that it enables a better control
on the importance of the features it selects to train the model.
Moreover, RF is a fully supervised method, from feature se-
lection to training, whereas the feature extraction methods
PCA and KPCA are unsupervised methods and may fail to
capture important features if they do not show high vari-
ance. From the user point of view, RF is also simpler to de-
ploy since it embeds feature selection and does not require
a two-step process of feature extraction and training (unlike
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PCA +SVM and KPCA + SVM). Parallel implementations
of the ML methods presented in this paper are also available,
enabling significant acceleration of model training and pre-
diction with a large number of data (Cavallaro et al., 2015;
Genuer et al., 2017).

The Bayesian method developed by Spang et al. (2016) re-
quires a priori knowledge of a domain expert to select the de-
cision boundaries and to tune the probabilities used for clas-
sification for different areas in the feature space. The ML
schemes proposed in this work are more objective in the
premises and rely only on the available training data with-
out additional assumptions. Models have been trained on the
CSDB, a simulation dataset that has been created systemati-
cally sampling the parameter space, not reflecting the natural
occurrence frequencies of parameters. This point is in our
opinion of great importance, as we demonstrated that ML
methods are capable of predicting PSC composition classes
without the need of substantial prior knowledge, providing
a means for consistency checking of subjective assessments.
Although the lack of ground truth narrows the assessment
down to comparison with other classification schemes, we
found that the classification results of the ML methods are
consistent with spectral features of the PSC particles, in par-
ticular, the features found in the real and imaginary part of
their refractive indices. Another important benefit of the pro-
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KPCA+5VM and Bayesian classifier
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Figure 16. Intercomparison of ML and Bayesian classifiers for Southern Hemisphere winter (May to September 2009). Ticks on the x axis
represent the classes of the KPCA + SVM classifier (a), the PCA + SVM classifier (b), and the RF classifier (¢). The y axis indicates the
fraction of the classes as predicted by the Bayesian classifier. N is the number of samples belonging to each class of the ML classifiers.

posed ML methods is that they have shown the potential of
extending the prediction to NAT particles with large radius,
which was not possible with the BC scheme. This aspect has
been successfully tested on the synthetic CSDB dataset and
might be a promising path for future research.

However, there are still some limitations to the proposed
ML approach. First, the feature selection methods found the
highest variance and feature importance at spectral windows
where ice and NAT have pronounced features in the complex
refractive indices, whereas the main features of STS are lo-
cated at wavenumbers not covered by the CSDB. Since the
classification of STS is therefore based on the absence of fea-
tures in the optical properties and for the large NAT particles
the features in the optical properties vanish as well, the dis-
crimination between STS and large NAT is more complicated
than the identification of ice. Hence, we suppose that the in-
clusion of more spectral windows, especially regions where
the optical properties of STS have features, may bear the po-
tential to improve the separation between STS and NAT. Sec-
ond, we showed that using a much smaller subset of the orig-
inal CSDB for training of the ML methods would have been
sufficient to achieve similar classification results. This sug-
gests that the information provided by the CSDB is largely
redundant, at least in terms of training of the ML methods.

Atmos. Meas. Tech., 13, 3661-3682, 2020

Despite the fact that the CSDB contains many training spec-
tra, it was calculated only for a limited number of PSC vol-
ume densities, particle sizes, and cloud layer heights and
depths as well as fixed atmospheric background conditions.
It could be helpful to test the ML methods using a training
dataset providing better coverage of the micro- and macro-
physical parameter space and more variability in the atmo-
spheric background conditions. Third, in the CSDB and the
ML classification schemes we assumed only pure constituent
(ice, NAT, STS 1, STS 2, and STS 3) PSCs, whereas in the at-
mosphere mixed clouds are frequently observed (e.g., Desh-
ler et al., 2003; Pitts et al., 2018). In future work, mixed PSCs
should be included, as an investigation of mixed PSCs could
be beneficial to assess how far the ML methods applied to
limb infrared spectra agree with predictions from CALIOP
measurements that already comprise mixed-type scenarios.
In general, the presented classification methods are
straightforward to adopt on spectrally resolved measure-
ments of other infrared limb sensors like the Cryogenic In-
frared Spectrometers and Telescopes for the Atmosphere
(CRISTA) (Offermann et al., 1999) or the GLObal limb Ra-
diance Imager for the Atmosphere (GLORIA) (Riese et al.,
2005, 2014; Ungermann et al., 2010) space- or airborne in-
struments. It could be of interest to extend the methods to
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combine different observational datasets, even with different
types of sensors providing different spectral and geometri-
cal properties of their acquisitions. This study has assessed
the potential of ML methods in predicting PSC composition
classes, which may be a starting point for new classification
schemes for different aerosol types in the upper troposphere
and lower stratosphere region (Sembhi et al., 2012; Griess-
bach et al., 2014, 2016), helping to answer open questions
about the role of these particles in the atmospheric radiation
budget.
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IPF  version 7.11 data can be accessed via ESA’s
Earth  Online portal at https://earth.esa.int/web/guest/-/
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ABSTRACT

A wide variety of Remote Sensing (RS) missions are
continuously acquiring a large volume of data every day.
The availability of large datasets has propelled Deep Learn-
ing (DL) methods also in the RS domain. Convolutional
Neural Networks (CNNs) have become the state of the art
when tackling the classification of images, however the pro-
cess of training is time consuming. In this work we exploit
the Layer-wise Adaptive Moments optimizer for Batch train-
ing (LAMB) optimizer to use large batch size training on
High-Performance Computing (HPC) systems. With the
use of LAMB combined with learning rate scheduling and
warm-up strategies, the experimental results on RS data clas-
sification demonstrate that a ResNet50 can be trained faster
with batch sizes up to 32K.

Index Terms— Distributed deep learning, high perfor-
mance computing, residual neural network, convolutional
neural network, classification, deepsat

1. INTRODUCTION

Deep Learning (DL) is emerging as the leading Artificial In-
telligence (AI) technique owing to the current convergence of
scalable computing capability (i.e., HPC and Cloud comput-
ing), easy access to large volumes of data, and the emergence
of new algorithms enabling robust training of large-scale deep
CNNs [1].

Recent HPC architectures and parallel programming have
been influenced by the rapid advancement of DL and hard-
ware accelerators (e.g., GPUs). The classical workloads that
run on HPC systems (e.g., numerical methods based on phys-
ical laws in various scientific fields) are becoming more het-
erogeneous. They are being transformed by DL algorithms
that require higher memory, storage, and networking capabil-
ities, as well as optimized software and libraries, to deliver
the required performance [2].

HPC systems are an effective solution that deals with the
challenges posed by big RS data. Modern Earth Observa-

The results of this research were achieved through
the support of HELMHOLTZ AI CONSULTANTS @ FZJ
https://www.helmholtz.ai/themenmenue/our-research/consultant-
teams/helmholtz-ai-consultants-fzj/index.html
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tion (EO) programs (e.g., ESA’s Copernicus) provide contin-
uous streams of massive volumes of multi-sensor RS data on
a daily basis .

While DL has provided numerous breakthrough for many
RS applications, some challenges are still unsolved. The de-
ployment of a deep model can produce a neural network ar-
chitecture with a significant number of tunable parameters
(i.e., millions for a ResNet50 architecture [3]), which requires
a large amount of time to complete its training.

To achieve high scalability performance over a large num-
ber of GPUs the main approach is to increase the effective
batch size (i.e., the batch size per worker multiplied by the
number of workers)[4]. However, it was noted that the use
of the popular the Stochastic Gradient Descent (SGD) opti-
mizer in a setting with batch sizes larger than 8K can lead
to substantial degradation of performance, e.g., classification
accuracy, if used without any additional countermeasures [5].

One mechanism to avoid this difficulty is tuning the learn-
ing rate schedule that uses warm-up phases before the train-
ing, scales learning rate with the number of distributed work-
ers, and reduces the rate according to a fixed factor after a
fixed number of epochs [6]. More sophisticated strategies to
deal with very large batch sizes use adaptive learning rates
that are tuned dependent on layer depth, value of computed
gradients and progress of training. In [7] the authors showed
that the use of a learning rate with linear scaling w.r.t. the
number of GPUs, step dacay, and warm-up allowed training
DL models on a RS dataset with batch sizes up to 8K.

In this study, we propose to use the recently presented
LAMB [8] optimizer with a multifold strategy consisting of a
learning rate scheduler with polynomial decay that calculates
the initial learning rate with a non-linear rule. We utilized also
a warm-up phase at the beginning of the training with length
proportional to the batch size [4] [S] [8]. We demonstrate that
this training strategy and the adoption LAMB optimizer can
scale the training of a ResNet50 for the classification of two
RS datasets, using batch sizes up to 32K without a significant
degradation of the accuracy.

Ihttps://sentinels.copernicus.eu/web/sentinel/news/-/article/2018-
sentinel-data-access-annual-report
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2. PROBLEM FORMULATION

Distributed computing frameworks such as the TensorFlow
native mirrored and parameter server strategies, PyTorch Dis-
tributed, Horovod [9] have gained visibility lately, enabling
a faster trainining of deep neural networks on large datasets
[4]. There are two approaches for distributed training, the
model distribution and the data distribution ((i.e., data par-
allelism)) [10]. In this work we used data distribution and
run the experiments on one of the HPC systems hosted at
the Jiilich Supercomputing Centre (JSC). Data distributed
frameworks are more straightforward to implement and re-
quire less hand-tuning. In data parallelism the DL model is
replicated on each worker and data are divided in different
chunks among the workers. The training of the models is then
executed in parallel, where each replica performs backpropa-
gation on different data. At the end of each iteration the mod-
els exchange their local parameters between each other in a
synchronized way. In this work, we adopted the Horovod li-
brary due to its flexible API that can be used on top of the
most popular DL libraries such as TensorFlow, Keras, Py-
Torch and MXNet. Horovod relies on Message Passing In-
terface (MPI) and NVIDIA Collective Communication Li-
brary (NCCL) libraries for the synchronization of the model
parameters among the different workers, which is performed
using a decentralized ring-allreduce algorithm [9].

3. METHODOLOGY

3.1. ResNet50

ResNet50 [3] was presented in 2015 and it is still among the
most widely used CNNs for solving various computer vision
tasks. Although stacking a large number of layers to create a
deep neural network would intuitively provide very powerful
and expressive models, in practice the training becomes more
difficult due to the so called vanishing gradient problem. It
was noted that in deep neural networks the gradient becomes
small as a function of the depth, preventing the model from
updating the weights [11]. ResNet50 aims at overcoming this
issue by adopting the skip connections: instead of directly
fitting the underlying mapping H(x), the residual mapping
F(z) := H(xz) — x is learned [3]. Implementing the skip
connections as identity mappings (F'(z) + ), [3] creates a
deep CNN solving the vanishing gradient problem.

3.2. LAMB optimizer

With the data distribution parallel strategy the effective batch
size is the result of the multiplication of the per-worker batch
size by the number of workers. The adoption of the SGD opti-
mizer was shown to help tackling optimization problems with
batch size up to 8K, used in combination with a strategy that
computes the initial learning rate according to a linear scaling
rule and a warm-up phase [4]. However, above the threshold

of 8K, this solution is not sufficient to train a model without
degradation of the results during testing. In [5], the authors
found that if the ratio of the L2-norm of weights and gradients
is high, the training can become unstable. The LAMB opti-
mizer has been specifically proposed to improve the training
stability and generalization performance [8]. LAMB is based
on the popular optimization algorithm adaptive learning rate
optimization algorithm (ADAM) [12]. In contrast to SGD,
LAMB is a layer-wise adaptive algorithm that adopts a per
dimension normalization with respect to the square root of
the second moment and a layer-wise normalization. The gen-
eral rule for updating the parameters with iterative algorithms
such as ADAM and SGD is:

L1 = Ty + Ny, )]
where x are the parameters of the model, 7 is the learning
rate and u is the update of the parameters. For the layer-wise
adaptive strategies the formula becomes:

o(||£i]))
(il o
o]

where z are the parameters at layer i, g the gradient at layer
i, 1 is the learning rate at step t and ® is a scaling function.
Comparing the classical rule for the update of the weights (eq.
1) with the formula of the layer-wise adaptive strategy (eq. 2),
we can observe that the two changes are the following: (i) the
update is scaled to unit /o-norm and (ii) an additional scaling
® is applied [8].

i
Tip1 =T — M

4. EXPERIMENTAL RESULTS

4.1. Dataset

The experiments were carried out on the SAT-4 and SAT-6 air-
borne datasets [13]. The patches were created using the Na-
tional Agriculture Imagery Program (NAIP) dataset, which
consists of 330,000 scenes covering the Continental United
States. The size of each patch is 28 x 28 x 4. Each patch
has 4 channels (i.e., RGB with near infrared) with 1m spatial
resolution. Each patch is associated to one class. The SAT-4
dataset contains 500,000 patches ans includes annotations of
four land cover classes, which are barren land, trees, grass-
land and a class that groups together everything that is not the
three aforementioned. The dataset was split in a training set
of 400.000 patches and a test set of 100.000 patches. Simi-
larly to SAT-4, SAT-6 contains patches with size 28 x 28 x 4,
but the total number of image patches is 405.000 and is an-
notated with six landcover classes that are barren land, trees,
grassland, roads, buildings and water bodies. The training set
consists of 324.000 patches and the test set of 81.000 patches.

4.2. Experimental Setup

We used the Dynamical Exascale Entry Platform (DEEP),
that is an European pre-exascale platform which incorporates
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Batch size 8K 16K | 32K | 65K
Learning rate | 0.02 | 0.028 | 0.04 | 0.05
‘Warm-up 5 10 20 40

Table 1. Hyper-parameters of LAMB optimizer as in the ex-
perimental setting of [8].

heterogeneous HPC systems. DEEP is being developed by the
European project Dynamical Exascale Entry Platform — Ex-
treme Scale Technologies (DEEP-EST) 2. The Extreme Scale
Booster (ESB) partition hosts 75 nodes, each equipped with
1 Nvidia V100 Tesla Graphics Processing Unit (GPU) (each
with 32 GB of memory). To test whether the data distributed
algorithm with large batch sizes can scale. we used up to 32
GPUs. We used Python 3.8.5 and the following libraries
for DL and the data distributed framework: TensorFlow
2.3.1, Horovod 0.20.3, Scikit-learn 0.20.3
and Scipy 1.5.2. SAT-4 and SAT-6 are saved as MAT-
LAB .mat files and were read using the Scipy library. We
trained the models with the Keras API and built the input
pipeling with the TensorFlow data API. We trained a ResNet-
50 models from scratch, i.e. without loading pre-trained
weights, on the datasets SAT4 and SAT6 [13]. Each patch
of the dataset is associated to one of the classes, making this
a patch-based multi-class classification problem. Thus, we
stacked a fully connected layer (with 6 neurons for SAT-6
and 4 neurons for SAT-4) on top of the model activated with
the softmax function. We selected a number of epochs equal
to 100 for the training of the models. The initial learning
rate was set using a heuristics that computes the learning rate
proportionally to the root square of the effective batch size.
We also adopted a polynomial scheduler of order 2 for the
learning rate as shown in [8], as well as a warm-up that grad-
ually ramps up the value of the learning rate at the beginning
of the training. The combination of these techniques helps
solving the problem of instability that can cause exploding
gradients. The hyper-parameters were selected based on [8]
and are shown in Tab. 1. As a baseline for comparison we
also used the ADAM optimizer with a fixed learning rate set
to 0.001 as in [12] and batch size equal to 64. We tested
also the SGD optimizer with hyper-parameters as explained
in [4], but the training did not converge in 100 epochs, thus
a further exploration of the hyper-parameter space should
be performed and results could be reported in future works.
We implemented a simple data augmentation with random
flips and rotation of the patches, which helps reducing the
overfitting.

4.3. Evaluation

The accuracy and loss metrics shown in Tab. 2, 3 and 4 are
the average of 3 runs for each set of hyper-parameters. Us-

2https://www.deep-est.eu/

Batch size | N. GPUs | Accuracy | Loss | Time [s]
8K 4 0.99 0.02 | 34

16K 8 0.98 0.07 | 18

32K 16 0.96 0.11 | 9

65K 32 diverges 5

Table 2. Accuracy and test loss, training time per epoch
epoch with LAMB optimizer, dataset SAT4.

Batch size | N. GPUs | Accuracy | Loss | Time [s]
8K 4 0.99 0.05 | 41

16K 8 0.98 0.11 | 22

32K 16 0.94 0.17 | 11

65K 32 diverges 6

Table 3. Accuracy and test loss, training time per epoch
epoch with LAMB optimizer, dataset SAT6.

ing LAMB and batch sizes up to 32K we could obtain results
that are comparable to those obtained using small batch sizes
and consistent with state of the art results [14]. In particular,
we can see that the accuracy obtained by using LAMB with a
batch size of 8K is very similar to that obtained using ADAM
with a much smaller batch size equal to 64 on both datasets
(shown in Tab. 2, 3 and 4). We did not test the ADAM opti-
mizer since it is known that it tends not to generalize well on
test data when large batch sizes are employed [15]. As stated
above, results remain acceptable with batch sizes of 32K us-
ing the new LAMB approach, while they diverge with batch
size equal to 65K. We can observe that as the batch size in-
creases, the test losses and accuracies tend to increase and
decrease respectively, up to the point where they significantly
diverge from baseline results. This happens even though we
did not observe training difficulties such as exploding gra-
dient, a behaviour that was observed using SGD with large
batches [4]. As the batch size grows, the generalization gap
becomes non negligible [15] due to the fact that optimizers in
the large batch size regime converge to sharp instead of flat
minimizers [16].

The scaling in terms of time required to complete an
epoch is slightly less than linear w.r.t. the number of GPUs
that are employed for the training (Tab. 2 and 3). We hypoth-
esize that the use of large per-worker batch size is beneficial
for scaling. In fact, using large batch sizes the communica-
tion time (time spent to exchange the gradients between the
workers) remains smaller than the computation time (time
spent to propagate the batches back and forth in the CNN),
reducing the GPUs idle time. A conclusive and thorough
study of the possible set-ups could be beneficial also to other
researchers in the field.
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Dataset | Batch size | Accuracy | Loss | Time [s]
SAT-4 | 64 0.98 0.02 | 263
SAT-6 | 64 0.98 0.04 | 214

Table 4. Accuracy and test loss, training time per epoch with
ADAM optimizer, dataset SAT4 and SAT6. These experi-
ments were carried out on a single GPU.

5. CONCLUSIONS

In this work the LAMB optimizer was used to train a ResNet-
50 model with large batch sizes up to 32K. The results ob-
tained with the SAT-4 and SAT-6 RS datasets showed that the
training performance remained unaffected and that process-
ing speed up was achieved. Training the model with batch
sizes above the threshold of 32K is still problematic, as it was
shown in the results using a batch size equal to 65K. An ad-
ditional consideration is that in the present work we used two
RS datasets with a simple multi-class classification problem,
but the question whether this approach could be extended to
more complex classification problems is still without an an-
swer. We are currently planning to work on a comparison with
the Layer-wise Adaptive Rate Scaling (LARS) optimizer [5],
which might be included in future publications. However, this
work should be considered as a preliminary assessment and a
systematic analysis that includes also other training strategies
and algorithms to deal with large batch size should be under-
taken, such as the adoption of a cyclical learning rate sched-
uler [17] and the dynamic increase of the batch size during the
training [18]. A quantitative analysis that takes into consid-
eration the optimal configuration for distributed DL such as
the per-worker batch size or specific parameters of Horovod
is also lacking at the moment and is in the future plans of
the authors. The repository with the Python code is publicly
available 3.
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Abstract—The combination of data acquired by Landsat-8 and
Sentinel-2 earth observation missions produces dense time series
(TSs) of multispectral images that are essential for monitoring
the dynamics of land-cover and land-use classes across the earth’s
surface with high temporal resolution. However, the optical sensors
of the two missions have different spectral and spatial properties,
thus they require a harmonization processing step before they
can be exploited in remote sensing applications. In this work,
we propose a workflow-based on a deep learning approach to
harmonize these two products developed and deployed on an high-
performance computing environment. In particular, we use a mul-
tispectral generative adversarial network with a U-Net generator
and a PatchGan discriminator to integrate existing Landsat-8 TSs
with data sensed by the Sentinel-2 mission. We show a qualitative
and quantitative comparison with an existing physical method [Na-
tional Aeronautics and Space Administration (NASA) Harmonized
Landsat and Sentinel (HLS)] and analyze original and generated
data in different experimental setups with the support of spectral
distortion metrics. To demonstrate the effectiveness of the proposed
approach, a crop type mapping task is addressed using the harmo-
nized dense TS of images, which achieved an overall accuracy of
87.83% compared to 81.66% of the state-of-the-art method.

Index Terms—Deep learning (DL), dense time series (TSs),
generative adversarial network (GAN), harmonization, high
performance computing (HPC), Landsat-8, remote sensing (RS),
sentinel-2, virtual constellation.

I. INTRODUCTION

HE availability of multispectral images systematically ac-
quired by remote sensing (RS) satellites is pivotal for the
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observation of land surface change and dynamic processes [1],
such as changes resulting from natural calamities [2], expan-
sion of urban areas [3], vegetation anomaly and phenology
changes [4], distribution of surface water resources [5], defor-
estation [6], etc. The time series (TS) of multispectral images ac-
quired by the NASA/United States Geological Survey (USGS)’s
Landsat-8 [7] and the European Space Agency (ESA)’s Sentinel-
2 [8] missions are the most widely accessible moderate-to-high
spatial resolution RS satellite images.

Landsat-8 was launched in 2013 and carries the operational
land imager (OLI) and the thermal infrared sensor (TIRS). It
acquires multispectral images at 30 m spatial resolution, which
is suitable for a wide variety of tasks. However, Landsat-8 can
only revisit the same area every 16 days, which is not sufficient
in applications requiring more frequent observations (e.g., near
real-time monitoring of continuous processes [9]). The Sentinel-
2 A and Sentinel-2B are the two polar orbiting satellites of the
Sentinel-2 constellation that were launched in 2015 and 2017,
respectively. This constellation can reach a revisit time of 5 days
at the equator (and even less for areas covered by more than one
orbit) and acquire 13 optical bands with 10, 20, and 60 m spatial
resolution.

The starting of the Sentinel-2 mission has opened potential
opportunities for combining its data with the ones acquired by
Landsat-8 to achieve more dense observations. In particular,
their integration can densify the acquired TSs and increase
the revisit time up to 3-5 days [10] and obtain more frequent
cloud-free surface observations. Furthermore, the spatial reso-
lution and spectral configuration (i.e., placement and number
of spectral bands) of the Sentinel-2 sensor were designed to be
compatible to analogous bands in Satellite Pour 1’Observation
de la Terre (SPOT) and Landsat sensors [11]. Consequently,
many research works have exploited virtual constellations of
Sentinel-2 and Landsat-8 for addressing different types of ap-
plications, for example to assess winter wheat yields at regional
scale [12], estimate number and timing of mowing events of
grasslands [13], monitor aquatic systems [14], retrieve the tem-
poral variations in biochemical and structural vegetation prop-
erties [15], estimate inland water quality [16], detect irrigated
areas [17], analyze land productivity and yield assessment [18],
map land surface phenology at continental scale [19], determine
the spatial distribution of evergreen forest in cloudy and rainy
areas [20], etc.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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Despite the similarity between Sentinel-2 and Landsat-8 ob-
servations, the two missions have different spatial resolution,
field of view spectral bandwidth, and spectral response function.
Consequently, before using together Sentinel-2 and Landsat-8
images, it is necessary to apply models for cross-sensor data
integration [21]-[23]. Linear regression is the most widely
used approach to reduce the spectral differences between the
two sensors. The authors in [24] used bidirectional reflectance
distribution function (BRDF) correction and data resampling
to attenuate the difference introduced by the different field of
view and spatial resolution, respectively. Other studies designed
regional fixed per-band transformation coefficients for applying
reflectance adjustment in Australia [25], Southern Africa [26],
and United States [27].

Since 2018, NASA is producing a Harmonized Landsat and
Sentinel (HLS) dataset' to further improve the temporal resolu-
tion of the combined product [28]. NASA proposed a method
that creates global fixed per-band transformation coefficients
to reduce the reflectance difference between Landsat-8 and
Sentinel-2 and generate smooth spectral TSs. In particular, the
approach takes into account the differences in spatial resolution,
atmospheric correction approaches, view geometry and radio-
metric characteristics of spectral bands. ESA has considered
this approach as a reference work for the definition of the
Sen2Like framework [29]. The objective of Sen2Like is to
generate Sentinel-2 like harmonized/fused surface reflectances
with higher periodicity by integrating additional compatible
optical mission sensors. The current implementation (November
2020) can harmonize Landsat-8 and Sentinel-2 data products?.
The authors in [30] observed that these methods can reduce
the reflectance difference to only some degree. It is possible
that the regional or global scale fixed per-band transformation
coefficients may not be suitable for all land cover types and at all
geographical locations. To mitigate this problem, they proposed
a time-series-based approach?® to improve the consistency of the
HLS datasets, which uses the TSs of matched Landsat-8 and
Sentinel-2 observations to build linear regression models for
each pixel. They then conducted the reflectance adjustment for
each individual pixel separately.

Instead of using a physical method or fitting the transfor-
mation coefficients of a linear regression, in our work we
developed an approach based on machine learning (ML), and
more specifically on a generative adversarial network (GAN)
architecture to harmonize the Sentinel-2 and Landsat-8 products,
transforming the data acquired by the Sentinel-2 multispectral
instrument (MSI) sensor into Landsat-8 OLI-like data. In the
last decade deep learning (DL) has enabled a leap in the quality
of a wide variety of applications in remote sensing (RS) [31].
In particular, generative adversarial networks (GANs) were first
presented by [32] in 2014 and are based on the training with
the backpropagation algorithm of two submodels, a generator,
and a discriminator. An extension of GANs are the conditional

![Online]. Available: https:/hls.gsfc.nasa.gov/
2[Online]. Available: https:/github.com/senbox-org/sen2like
3[Online]. Available: https://github.com/GERSL/TRA

GAN:S [33], in which the generator is given additional informa-
tion to better approximate the distribution of the real samples.
The competitive game of one model against the other pushes the
generator to create new fake examples that are indistinguishable
from real ones. While the generator creates new data from an
input distribution, the discriminator is devoted to discern the
real and generated examples looking at their distribution. For
these reasons, GAN have attracted much research efforts to
computer-vision-related tasks [34].

GANSs have been employed also in different RS applications.
Among those, a promising application is super-resolution, where
GANS offer the ability to retrieve high-frequency components
that seem not to be captured by existing convolutional neural net-
works (CNN5s) [35], thanks to the contribution of the adversarial
loss [36]—[38]. Chen et al. [39] proposed a GAN-based approach
to super-resolve Landsat-8 images and reconstruct them to be
Sentinel-2-like using the true color composite of RGB bands.
In our approach we propose the opposite direction of the data
flow, from Sentinel-2 to Landsat-8 data, as our proposed method
focuses on radiometric consistency rather than spatial resolution.
Moreover, we also use the near infrared (NIR) and the short wave
infrared (SWIR) bands, which are extremely important to per-
form environmental monitoring (e.g., vegetation biophysical and
biochemical variable retrieval, ice detection, etc.). In particular,
the NIR and SWIR spectral channels provide key information
on vegetation and crops status. GANs have been applied also
to other tasks, such as to enhance the detection of small objects
in RS data with an adaptation of the enhanced super-resolution
generative adversarial network (ESRGAN) [40], or to change de-
tection with multi-sensor data with the use of a CycleGAN [41].
Conditional GANs were used also for the fusion of acquisitions
from synthetic aperture radar (SAR) and optical sensors, e.g.,
in [42] optical data were reconstructed from SAR and in [43] a
GAN was used to fuse SAR and optical multispectral data for
cloud removal.

A well known bottleneck of employing DL models is the
large amount of computational resources that are needed for the
training phase. DL models require to be fed with large amounts
of data in order to learn meaningful features, thus implying
the need for dedicated pipelines for extraction and handling of
such data, which can impact severely the performances of the
methods. Despite the great success of CNNS, their deployment
on commodity hardware (e.g., desktop computers, laptops) is
often challenging, given their computational power and memory
constraints. High-performance computing systems can come
at aid in that regard, offering dedicated hardware accelerators
to efficiently deploy and scale-up processing workflows and
significantly enhancing their computational performance (i.e,
reported as floating point operations per second (FLOPS)). HPC
systems are on the verge of entering into the new era of exascale
computing in the coming years, as currently the most powerful
computers can reach hundreds of PetaFLOPS*. A large number
of fields of research use HPC systems for addressing data storage
challenges and developing scalable data processing workflows:

4[Online]. Available: https://www.top500.org/lists/top500/2020/11/
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from climatology to astrophysics, medicine and industrial appli-
cations [44]. In RS, HPC has been an essential component from
the very beginning in the field of EO since its technology and
applications include unique data processing, storage or trans-
mission requirements [45], [46]. In the current era of artificial
intelligence (AI) supercomputers (i.e., HPC systems equipped
with specialized hardware accelerators [47]), applications from
RS also use them to speed-up the processing of DL models that
include a high number of trainable parameters [48].

From this brief analysis of the literature, it turns out that the
integration of the multispectral images acquired by Landsat-8
and Sentinel-2 is extremely interesting from the operational view
point due to the complementary properties of the two sensors.
While Landsat satellites are approaching 50 years of continuous
global data collection with a temporal revisit of 16 days, the
recent launch of Sentinel-2 allows for the acquisition of images
having a very high revisit time (i.e., 5 days at the equator with
2 satellites which results in 2-3 days at mid-latitudes). In this
context, Sentinel-2 images can be used to generate Landsat-8
like images (from the spectral and spatial view point) with the
aim of having dense TSs of images compatible with the TSs
of real Landsat-8 available in the past. Such long and dense
TSs of images allow for long-term environmental analyzes,
which are extremely important for several applications (i.e.,
climate change, deforestation analysis, desertification, urban
monitoring, etc.).

In the literature, the integration of Landsat-8 and Sentinel-2
images has been mainly addressed by the RS community con-
sidering physical methods or regression models due to their
capability of properly handling the harmonization problem from
the physical view point, and their low computational burden.
The latter is particularly important when working at country
or continental scale, where the optical preprocessing has to be
applied over a hundred of images. However, such methods can
only partially mitigate the reflectance difference and may fail in
heterogeneous areas where complex nonlinear harmonization
problems have to be solved. In this framework, it is necessary to
define an automatic system suitable for all land cover types and at
all geographical locations, which is able perform the integration
of these data in a fast and efficient way.

This article presents an automatic work-flow which aims to
facilitate the integration of the optical satellite images acquired
by Landsat-8 and Sentinel-2 spectral sensors at operational level.
Differently from the literature, the proposed system architecture
takes advantage from the capability of the GAN to accurately
learn and model the considered nonlinear problem, while pre-
serving the spectral and spatial properties of the two satellite
sensors. To mitigate the computational cost of the required
DL models, we take advantage of HPC systems to deploy a
parallel and scalable processing workflow that encompasses the
extraction of the features from the input tiles, the training of
the model and the reconstruction of the harmonized Landsat-8
and Sentinel-2 data product. The speed-up of the training of the
DL model is obtained thanks to the adoption of a data parallel
strategy, which distributes the training of the GAN on multiple
GPUs.

The main contributions of this work are the following: 1) the
definition of a multispectral adaptation GAN tailored to the pe-
culiar properties of Sentinel-2 and Landsat-8 in terms of spatial
resolution, spectral bandwidth, and spectral response function;
2) the implementation of a fully automatic and unsupervised
dedicated pipeline, ready-to-use, being able to ingest Sentinel-2
and Landsat-8 data and to produce a dense TS of optical satellite
images; and 3) the efficient implementation of a parallel and
scalable processing workflow developed and deployed on an
HPC environment on up to 16 GPUs, thanks to the adoption
of a data distributed strategy, which contributes to mitigate the
computational burden of the training.

II. PROPOSED MULTISPECTRAL ADAPTATION GAN

The aim of this work is to generate harmonized dense time
series (TSs) of Landsat-8 and Sentinel-2 images. To this end,
we propose a multispectral adaptation GAN (MGAN) model
tailored to the specific properties of the considered satellite
optical data. Our objective is to model the spatial and spectral
properties (point spread function) of the two sensors in order
to adapt the Sentinel-2 data to be Landsat-8 like. Indeed, the
proposed GAN is tailored to the specific spectral and spatial
properties of the considered sensors to facilitate the adaptation
of the Sentinel-2 images to the Landsat-8 ones. In particular,
the proposed architecture is build upon the established pix2pix
conditional GAN [49] that was designed for color and grayscale
image-to-image translation. Based on the GAN concept, the
adversarial game played by the two models of the original
pix2pix architecture [49] can be represented by the formula

mcin max V(G,D) = Ex, y[log D(X,Y)]
+ Ex,z[bg (1 - D(X7 G(X7 Z)))] Y]

where E is the expected value, X and Y are the source and
target images (having the same resolution), z the input noise
of the generator and V' (G, D) is the value function. In partic-
ular, the generator G and the discriminator D of pix2pix are
a U-net encoder—decoder architecture with skip connections
and a PatchGAN, respectively. In the U-net encoder—decoder
generator [50], the first part contains a number of downsampling
convolution layers. The second part is a mirrored version of the
first, with a transposed convolution for upsampling the data,
which flows from the bottom to the top of the U-net through
a bottleneck. The skip connections, which link the inner layers
of the encoder and decoder, allow low-level information to pass
directly from the first to the last layers of the U-net.
Differently from the original implementation of the pix2pix,
the input data are no more RGB natural images, but multireso-
lution and multiband images with different spectral properties.
To handle the peculiarities of the considered RS data, we trained
the proposed MGAN from scratch using paired Landsat-8 and
Sentinel-2 images. Table I reports the properties of the consid-
ered spectral bands in terms of spatial and spectral resolutions
for both the considered optical sensors. According to the spectral
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TABLE I
SPECTRAL BANDS OF LANDSAT-8 AND SENTINEL-2 SELECTED ACCORDING TO
THE SPECTRAL AGREEMENT OF THE OPTICAL SENSORS

Landsat-8 Sentinel-2
Band | Wavelenght (um) | Res. (m) | Band | Wavelenght (um) | Res. (m)
2 0.450-0.515 30 2 0.458-0.523 10
3 0.525-0.600 30 3 0.543-0.578 10
4 0.630-0.680 30 4 0.650-0.680 10
5 0.845-0.885 30 8 0.785-0.900 10
6 1.560-1.660 30 11 1.565-1.655 20
7 2.100-2.300 30 12 2.100-2.280 20

characteristic of Sentinel-2 and Landsat-8, we focused the atten-
tion on the four 10 m bands and the two shortwave infrared spec-
tral channels acquired at 20 m by Sentinel-2 (i.e., the spectral
bands consistent with the Landsat-8 ones). Let us focus on the
multiresolution Sentinel-2 images. Let Xyr € R% >4 < and
Xig € R%*d2xLix be the set of high resolution (10 m) and low
resolution (20 m) spectral channels of Sentinel-2, respectively,
where Xyr has dy x d; pixels and Lyg bands while X; g has
dy x dy pixels and Ly bands. Let Y € R%*43*Ls be the real
Landsat-8 image contemporary to the Sentinel-2 one, having
ds % dspixels and anumber of bands equalto L3 = Lyr + Lig.

In the considered implementation of the proposed MGAN,
the bottom of the generator has been modified to take as input
the patches of Sentinel-2 at original resolution Xpg and Xjr
(i.e., 10 and 20 m). To this end, we added one convolutional
layer for each initial resolution, concatenating their output before
entering into the encoder—decoder structure. Fig. 1 illustrates
the modified U-Net tailored to the peculiar spectral and spatial
properties of Sentinel-2 and Landsat-8 for facilitating the sensor
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Flowchart of the modified U-Net tailored to the peculiar spectral and spatial properties of Sentinel-2 and Landsat-8.

adaptation performed by the proposed MGAN. The patches of
the high-resolution Sentinel-2 spectral channels X g have size
384 x 384 x 4, while the low-resolution ones X r have size
192 x 192 x 2. The different convolutions and transposed con-
volutions lead to the direct production of a Landsat-8 like image
having size 128 x 128 x 6, whichimplicitly includes the 2 chan-
nels of X7 r and the 4 channels X 7 having spatial resolution
of 30 m. This condition allows us to keep the same number of
inner layers of the generator and the discriminator as in the orig-
inal implementation. Let ¥ € R%*%*Ls be the downsampled
Sentinel-2 image having all the spectral bands at the spatial reso-
lution of the desired target image. Please note that the downsam-
pling convolution layer allows us to directly handle the spatial
resolutions of the different spectral bands of Sentinel-2 without
the need of performing any preprocessing interpolation step.
The PatchGAN discriminator is designed to capture the pat-
terns at the scale of the input image. Its objective is to classify
N x N patches of G(X, z) (the input synthetic patch created by
the generator) and Y (the target Landsat-8 patch) as fake or true,
encouraging the generator to produce more accurate and realistic
outputs. Differently from the standard pix2pix implementation,
the generator of the considered MGAN does not perform the
instance normalization [51], since it is not suited to multispectral
images. Indeed, similarly to the case of the standard batch
normalization typically used in computer vision, the patches
may not be consistent from the spectral view point. For this
reason, in the model we added the spectral normalization right
after the instance normalization in the downsampling blocks
of the discriminator [52]. The addition of those layers in the
discriminator is beneficial for the stability of the training and the
spectral content of the obtained synthetic Landsat-8 images. In
greater details, we train the generator and discriminator jointly,
employing two losses. The L loss is used in for the training of
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Fig. 2.

A

True color representation of the Sentinel-2 image acquired on the 21/04/2018 over the considered study area (coordinates are reported in the UTM WGS84

33 N system). An example of the reference data used to perform the crop type classification task is reported in the zoom area highlighted in red.

the generator to learn a low-frequency representation
L =Ex||Y - Y| @)

where Y = G(X, z) is the generated image obtained consid-
ering as input the Sentinel-2 image X and Y is the target
Landsat-8 image. We adopted a relativistic adversarial loss for
the discriminator [shown in (3)] as a replacement of the original
adversarial loss employed in pix2pix. Using the relativistic loss,
instead of the absolute probability that one input image is real or
fake, the relative probability that a real image is more realistic
than a fake one is computed [53]. The adoption of the relativistic
adversarial loss increases for the stability of the training [54].
The discriminator loss is

Lp = —Ey[log(Dg,(Y,Y))]
—Ey[log(1 — Dg, (Y. Y))] 3)
and the generator loss
Lg = —Eyl[log(1 — Dg,(Y,Y))]
— Ey[log(Dr, (Y,Y))] @

where Y and Y are the real and the fake generated images,
respectively, and Dp, is the output of the discriminator. To
properly train the considered MGAN from scratch, we imple-
mented data augmentation. The lack of large amount of data is
known to pose several challenges during the training of GAN,
since in that setting the discriminator tends to fool the generator
easily, which in turn gets stuck and cannot improve anymore.
This is particularly true when dealing with RS data [55] recently
introduced a data augmentation technique specifically designed
to work with GANSs. Differentiable augmentation addresses this

issue by applying the same set of transformations on both the
generated and real images, regularizing the discriminator and
reducing training instability. We adopted the color (contrast,
brightness, saturation), translation (the images are translated
and zero padded) and cutout (masking a region of the images)
policies.

III. DATASET DESCRIPTION AND DESIGN OF EXPERIMENTS

In this section, we present the considered study area and
the RS data employed to test the proposed approach. Then,
we describe in detail the procedure designed to generate the
harmonized TS of Sentinel-2 and Landsat-8 images.

A. Dataset Description

Fig. 2 presents the considered study area, which covers the
valley of the Donau in the proximities of Linz, Austria (tile
33UVP of Sentinel-2, tile 191/026 of Landsat-8). Such area is
characterized by a heterogeneous landscape typical of the Alpine
region, where the topography ranges from high mountain to
lowlands areas. The land cover is characterized by the presence
of many crop types, which model a complex scenario since crops
rapidly change their textural and spectral features. Moreover, the
study area is heavily affected by cloud and snow coverage. Due
to high temporal resolution of Sentinel-2, several pairs of real
Landsat-8 and Sentinel-2 images acquired at the same date (or
a one day of distance) are used to train the GAN network from
scratch. Table II reports the acquisition dates of the considered
images collected in Spring and Autumn. Only images having
low cloud coverage (smaller than 30%) were used to train the
MGAN.
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TABLE 1
LANDSAT-8 (TILE 191/026) AND SENTINEL 2 (TILE 33UVP) IMAGES USED IN
THE EXPERIMENTS.

Landsat-8 images Sentinel-2 images
04/04/2018 04/04/2018
20/04/2018 21/04/2018
Training 06/05/2018 06/05/2018
27/09/2018 26/09/2018
13/10/2018 13/10/2018
Prediction - 03/07/2018

Five images were used to train the MGAN, while the sentinel 2 image acquired on
the 03/07/2018 was used for prediction only.

TABLE IIT
NUMBER OF SAMPLES FOR EACH CROP TYPE

Crop Type # Samples
Grassland 2600
Maize 1668
Winter Barley 2400
Winter Caraway 400
Rapeseed 868
Beet 972
Spring Cereal 766
Winter Wheat 600

To assess the capability of the trained MGAN to correctly
generate synthetic Landsat-8 data from Sentinel-2 images, the
Sentinel-2 data acquired on 03/07/2018 was not involved in
the training but used for prediction only. Indeed, the Landsat-8
acquisition available in July 2018 are all strongly affected by
cloud coverage; thus, they cannot be used to train the model.
This real test case demonstrates the importance of the proposed
method from the operational view point. The use of Sentinel-2
data to generate synthetic Landsat-8 images having a good
temporal sampling of the whole year. These TSs are extremely
important to correctly handle multitemporal tasks such as crop
type mapping. To this end, a 2018 reference dataset of crop types
of the considered study area is used to accomplish this peculiar
classification task. Table III reports the set of crop types of the
considered classification problems together with the number of
samples per class. The training and test sets are statistically
independent, since training and test samples have been extracted
from spatially disjoint portions of the considered study area.
An example of ground reference data used to perform the crop
type mapping task is reported in Fig. 2, where in the zoom the
different crop types are highlighted in different colors.

B. Design of the Experiments

To train the considered MGAN, both the Landsat-8 and
Sentinel-2 images are split into patches. Fig. 3 reports the
different stages of our method, from the training of the model
to the prediction and reconstruction of the entire tiles. First, the
Landsat-8 images are warped to extract the region overlapping

Model Training

Landsat 8 Image
+ Cloud Mask

Sentinel 2 image
+ Cloud Mask

Warping

Sentinel 2
Patch Extraction

Sentinel 2 image
+ Cloud Mask

Multispectral GAN Training

Synthetic Landsat 8 Production

Whole Image Reconstruction

Synthetic Landsat 8 image

Fig.3. Flowchart of the different stages of the proposed method. It receives as
input TSs of Landsat-8 and Sentinel-2 acquired over the same geographical area.
Firstly, the warping step aligns the two TSs. Then, the patch extractor generates
paired and overlapping patches (i.e., training samples) that are trained by the
proposed MGAN. The final stage reconstructs the whole synthetic Landsat-8
image.

with the Sentinel-2 tiles, by applying a nearest neighbor resam-
pling strategy that does not affect the spectral content of the
image. Then, possible spectral outliers are removed from both
images. To this end, we considered the standard procedure of sat-
urating the pixel values below and above the 1 and 99 percentiles
of the spectral distribution computed per band. Finally, the paired
patches were extracted from the two original TSs of Landsat-8
and Sentinel-2. For the Landsat-8 data, the dimension of the
patches is 128 x 128 px (30 m resolution), while for Sentinel-2
they are 192 x 192 px (for the 20 m resolution bands) and 394 x
394 px (for the 10 m resolution bands). In particular, a stride of
half the dimension of the patch is considered to generate over-
lapping patches, thus increasing the number of samples. Patches
with a significant cloud or snow coverage are not used during
training and are excluded with the usage of the available masks.
The information provided by the cloud masks of Landsat-8 (i.e.,
pixel_ga band) and Sentinel-2 (i.e., SCL band) are used to define
the valid patches for training. The pixel values of each patch are
normalized per band by subtracting the mean and dividing by
the maximum value. Once that the GAN is trained, it can be
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used to predict synthetic Landsat-8 images by using Sentinel-2
data. During prediction, each original Sentinel-2 patch is fed
into the generator and the corresponding synthetic Landsat-8
patch is produced. The final step is the reconstruction of the
entire image from the predicted patches. We applied a buffer
equal to 1/4 of the dimension of the patch when fusing them.
The tile is then reconstructed using only the central part of the
patches, skipping the buffers to limit distortions caused by the
convolution operations at the edges of the patches.

IV. IMPLEMENTATION AND EXPERIMENTAL SETUP

In this section, details are given on the implementation and
computational setup. Moreover, the quality indexes used to
quantitatively evaluate the proposed method are reported in the
experimental setup section.

A. Implementation Setup

Of the two main families to distribute the training of a
model [56], we used the data distribution approach (i.e., data
parallelism). Among the different frameworks that exist to inte-
grate a data distributed strategy into existing code we adopted
Horovod [57], a library that offers a flexible API that works on
top of most DL libraries, i.e., TensorFlow, Keras, PyTorch, and
MXNet. Horovod makes use of Message Passing Interface (MPI)
and the NVIDIA Collective Communication Library (NCCL)
to implement a decentralized and efficient ring-allreduce al-
gorithm [57], which allows the computation of the gradients
in a distributed fashion. We used ADAM with base learning
rate {7 = 0.0001 for the optimization of both the generator and
the discriminator, which we scaled linearly w.r.t. the number of
graphics processing units (GPUs), without warm-up phase and
learning rate schedulers. The training was performed for 100
epochs, as after that point the L; loss begins to diverge and the
quality of the predicted patches deteriorates. The weights of the
U-Net and of the PatchGAN were initialized with the default
Glorot uniform distribution [58]. The local batch size used for
each GPU is 16, therefore the resulting maximum global batch
size used in the present work, computed as global _ batch_size
= number _ gpus x local _ batch_size, is equal to 256.

B. Experimental Setup

The experiments were carried out on the extreme scale booster
(ESB) partition of the of the dynamic exascale entry platform—
extreme scale technologies (DEEP-EST) and on the booster
partition of the Jiilich Wizard for European Leadership Sci-
ence (JUWELS) supercomputers at the Jiilich Supercomputing
Centre (JSC) [59]. The training was scaled on up to 16 Nvidia
Tesla V100 and A100 graphics processing unit (GPU). We
used Horovod data-parallel framework on top of TensorFlow2,
with a custom made training loop. The data preprocessing was
deployed on the Jiilich Wizard for European Leadership Science
(JUWELS) system [47]. We used the Geospatial Data Abstrac-
tion Library GDAL 2. 3.2 through its Python APL

To quantitatively evaluate the results obtained we considered
several spectral distortion metrics typically used in the liter-
ature. In particular, we considered the relative dimensionless
global error (ERGAS), the spectral angle mapper (SAM), the
root-mean-square error (rmse), the universal image quality index
(UIQI), and the peak signal-to-noise ratio (PSNR) measures
on the valid patches (i.e., low cloud coverage). Spectral angle
mapper (SAM) [60] measures the spectral distortion in terms of
angle between the vectors of the reference image and generated
image

(6]

SAM(Y,Y) £ arccos < (v, ¥) )

Y2 - 1Y

where Y is the real input and Y the predicted input. The lower
is the value of SAM, the lower the presence of spectral devi-
ations between the two images. Relative dimensionless global
error (ERGAS) measures the quality of the generated image
compared to the reference image as a normalized mean square
error between each band of the two images [61]

Ls -
N 1|1 & MSE(Y,Y
ERGAS(Y,Y) £ 100= > MSE(Y1, Y1) (©)

T 2

s Ls =1 u\?t
where % is the ratio between the pixel sizes (i.e., equal to one in
our case), Y; and Y, are the [th bands of the generated image
and of the reference image, respectively; the MSE(Y, Y;) is the
mean squared error between Y; and Y; and Py, is the mean of

Y. As for SAM, a low value of ERGAS implies a low presence
of distortion in the generated image compared to the reference.
The RMSE is defined as

LY Y|

RMSE(Y,Y) e

(M

where Y is the original input, Y the predicted input.

The universal image quality index (UIQI) [62] has been com-
puted on a sliding window of size 32 x 32 pixels, and averaged
over all window positions per band. Let y; and §; denote the
jth windowed segment of a single band of the reference and the
simulated images, respectively. The UIQI is given by

w

R 1 Oy ¢
Qy.9) 2 3 > 2~
j=1 Yi“Yi

2“}’1 My, QUYJ 9y,

2 2 2 2
Hy] +'u3’1 a-yhj +JS’J

®)

where oy 5. is the covariance between y; and §;, oy, and piy,
are the standard deviation and the mean value of y;, while oy,
and fig; are the standard deviation and the mean value of ¥,
respectively. This index has a range of [—1, 1], being equal to 1
when y = §. To extend the UIQI index to the multiband case,
we average the band indexes as follows:

QYY) 2 Y Qv Y ©
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TABLE IV
SPECTRAL DISTORTION METRICS BETWEEN THE ORIGINAL LANDSAT-8 DATA AND: 1) THE SYNTHETIC LANDSAT-8 IMAGES GENERATED USING THE PROPOSED
MGAN, 2) THE HARMONIZED LANDSAT-8 IMAGES GENERATE USING THE BASELINE METHOD HLS, AND 3) THE ORIGINAL CONTEMPORARY SENTINEL-2 IMAGES.

Data Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Overall

SAM

Synthetic Landsat-8 (MGAN) 0.22 0.18 0.21 0.16 0.17 0.19 0.19

Harmonized Landsat-8 (HLS) 0.46 0.37 0.48 0.29 0.30 0.39 0.38

Original Sentinel-2 0.32 0.26 0.31 0.23 0.20 0.22 0.26
ERGAS

Synthetic Landsat-8 (MGAN) 719 674 731 647 669 696 1933

Harmonized Landsat-8 (HLS) 1321 924 1051 1020 882 930 2903

Original Sentinel-2 875 780 884 727 685 740 2180
RMSE

Synthetic Landsat-8 (MGAN) 185 305 313 1229 806 520 668

Harmonized Landsat-8 (HLS) 275 390 475 1381 946 692 799

Original Sentinel-2 285 371 393 1344 843 607 744
UIQI

Synthetic Landsat 8 (MGAN) 0.66 0.67 0.66 0.67 0.67 0.66 0.67

Harmonized Landsat-8 (HLS) 0.58 0.63 0.55 0.60 0.64 0.60 0.60

Original Sentinel 2 0.62 0.65 0.64 0.66 0.66 0.65 0.65
PSNR

Synthetic Landsat-8 (MGAN) 337 333 333 322 325 329 327

Harmonized Landsat-8 (HLS) 331 328 326 317 321 323 321

Original Sentinel 2 331 330 329 319 324 326 324

The obtained results are the average values over the 5 images of the considered dataset. Results are provided per spectral band and overall. The best results are

highlighted in bold.
The peak signal-to-noise ratio (PSNR) is defined as

)LZ

PSNR(Y,Y) 2 20log;o | —————
zlY -Y]|

(10)

where % is the number of levels of the images.

V. EXPERIMENTAL RESULTS

In this section, first we present the quantitative results ob-
tained in terms of spectral distortion metrics. The quantitative
evaluation is provided together with qualitative examples of
the obtained synthetic Landsat-8 images. Finally, the generated
TS of synthetic Landsat-8 images is used to perform a crop
type mapping task to assess the capability of the network to
accurately reproduce the spectral properties of the data. The
proposed approach is compared with the physical method HLS
[28] developed for reducing the reflectance differences between
Landsat-8 and Sentinel-2, thus generating smooth spectral TSs.
Please note that such method is widely used from the operational
view point [29].

A. Quantitative and Qualitative Results

Table IV reports the results obtained for different spectral
distortion metrics comparing the original Landsat-8 images and:
1) the synthetic Landsat-8 images produced by the proposed

MGAN; 2) the harmonized Landsat-8 images generated using
the baseline method HLS; and 3) the original contemporary
Sentinel-2 images. The best results are highlighted in bold.
Please note that the evaluation of the spectral difference between
real Landsat-8 data and Sentinel-2 data is reported to evaluate
the capability of the methods to reduce the spectral difference
of these data.

From the results obtained, one can notice that the metrics
computed between Landsat-8 and Sentinel-2 images demon-
strate the need of harmonizing these data from the spectral view
point. The HLS reduces the spectral distortion for some spectral
bands. However, for all the metrics, the best results are achieve
by the synthetic Landsat images generated with the proposed
MGAN. In particular, the MGAN is able to correctly reproduce
the spectral properties of Landsat-8 regardless of the spectral
bands. Indeed, similar error metrics are achieved in both the RGB
spectral channels (i.e., Band2, Band3, and Band4) as well as the
near infrared (Band5) and shortwave infrared bands (Band6 ad
Band7).

The results obtained from the quantitative view point are
confirmed from the qualitative ones. In order to assess the
consistency between the generated and the target data, Fig. 4
reports some portions of the: 1) original Landsat-8 image (tar-
get); 2) syntethic Landsat-8 data produced by the MGAN; and
3) harmonized Landsat-8 data produced by the baseline method
(HLS); and 4) contemporary Sentinel-2 image used to generate
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Fig.4. Qualitative examples of the obtained Landsat-8 images. The true color composite (RGB) is reported for the (a), (i) target Landsat-8 image, (b), (j) generated
Landsat 8 with the proposed MGAN, (c), (k) generated Landsat 8 with the HLS, and (d), (1) original Sentinel-2 image. The false color composite is reported for the
NIR and SWIR bands for the (e), (m) target Landsat-8 image, (f), (n) generated Landsat-8 with the proposed MGAN, (g), (0) generated Landsat-8 with the HLS,

and (h), (p) original Sentinel-2 image.

the Landsat-8 data. The synthetic image produced by the MGAN
looks more similar to the original Landsat-8 image than the
original Sentinel-2 input data and the harmonized Landsat8 data
produced by the HLS method. These results also confirm that the
quality of the generated images is good and does not suffer from
significant distortions and artifacts. From the results obtained,
one can notice that the generated data looks more similar to
the original Landsat 8 image than the original Sentinel-2 input
data and the harmonized Landsat-8 data produced by the HLS
method. For instance, the presence of bright buildings absent
in the real Landasat-8 images [see Fig. 4(a)] is visible in the
harmonized data produced by the HLS method [Fig. 4(c)] but
not present in the synthetic data produced my the MGAN [see
Fig. 4(b)].

B. Crop Type Mapping Results

To assess the capability of the proposed MGAN to accurately
model the spectral information of Landsat-8, a crop type map-
ping task was carried out using the obtained TS of produced
synthetic images. This peculiar classification task requires the
availability of accurate multitemporal and multispectral infor-
mation to properly retrieve the crop types present in the scene.
Indeed, differently from other land-cover classification tasks
that can be performed using mono-temporal data, the temporal
information is fundamental to accurately model the phenological
trend of the crop types.

Table V reports the classification results obtained by consid-
ering TSs of: 1) 5 synthetic Landsat-8 images produced by the
proposed MGAN; 2) 5 harmonized Landsat-8 images obtained
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TABLE V
CROP TYPE MAPPING RESULTS OBTAINED BY CONSIDERING TSS OF: 1) 5 SYNTHETIC LANDSAT-8 IMAGES PRODUCED BY THE PROPOSED MGAN, 2) 5
HARMONIZED LANDSAT-8 IMAGES OBTAINED BY USING THE BASELINE METHOD (HLS), AND 3) 6 SYNTHETIC LANDSA- 8 IMAGES PRODUCED BY THE PROPOSED
MGAN. THE TS OF 5 IMAGES WERE PRODUCED BY THE PROPOSED AND THE BASELINE METHODS USING BOTH THE ORIGINAL SENTINEL 2 AND LANDSAT 8
IMAGES. TO GENERATE THE TS OF 6 IMAGES, A SENTINEL-2 IMAGE ACQUIRED ON THE 03/07/2018 FOR WHICH NO CORRESPONDING CLOUDLESS LANDSAT-8
DATA ARE AVAILABLE WAS USED. PA IS THE PRODUCER’S ACCURACY OR RECALL, UA IS THE USER’S ACCURACY OR PRECISION, F1 IS THE F1-SCORE AND OA 1S
THE OVERALL ACCURACY

TS of 5 images TS of 6 images
Crop Type Synthetic Landsat-8 (MGAN) Harmonized Landsat-8 (HLS) Synthetic Landsat-8 (MGAN)
PA % UA % F1% PA % UA % F1% PA% UA % F1%
Grassland 96.38 88.24 92.13 95.46 76.60 85.00 96.85 90.25 93.43
Maize 87.05 88.00 87.52 79.50 79.31 79.40 92.93 92.70 92.81
Winter Barley 88.17 86.37 87.26 82.83 82.08 82.45 93.92 90.30 92.07
Winter Caraway 71.00 96.60 81.84 64.50 94.16 76.56 70.00 95.89 80.92
Rapeseed 88.25 98.46 93.08 81.57 9491 87.74 88.71 96.49 92.44
Beet 93.62 90.46 92.01 85.19 87.71 86.43 95.68 94.90 95.29
Spring Cereal 77.28 80.65 78.93 65.54 83.39 73.40 82.77 87.81 85.22
Winter Wheat 64.67 74.33 69.16 49.67 79.68 61.19 78.00 89.31 83.27
OA % 87.83 81.66 91.53
by using the baseline methods (HLS); 3) 6 synthetic Landsat-8 . JUWELS BOOSTER
images produced by the proposed MGAN. The TSs of 5 images DEEP
were produced by the proposed and the baseline methods using 175 1 =
both the original Sentinel-2 and Landsat-8 images. To generate 150
the TS of 6 images, we considered the Sentinel-2 image acquired B s
on 03/07/2018 for which no corresponding cloudless Landsat-8 g
data are available. Since no cloud-less images were acquired by % 1001
the Landsat-8 sensor in July 2018 for the considered tile, no £ 5l
quantitative evaluation can be performed in terms of spectral ol —
distortion metrics. However, the PA%, UA%, F1%, and OA% -
confirm the quality of the added image. The classification is per- 37 "B —
formed by training a standard Support Vector Machine (SVM) 0 r " - ~

with RBF kernels [63]. The optimal kernel parameters (i.e., the
regularization parameter C' and the spread of the kernel ) were
selected by a fivefold cross-validation.

This test case demonstrates the need to densify existing TSs of
satellite data. The temporal and spectral information provided by
the satellite acquisition of July 2018 sharply increases the classi-
fication results by improving the modelling of the phenological
trends of the considered crop types. This increases the OA%
from 87.83% (TS of 5 synthetic Landsat-8 images) to 91.53 %
(TS of 6 synthetic Landsat-8 images). From these results, we
can conclude that the proposed MGAN can be used to generate
harmonized dense TSs of Landsat-8 and Sentinel-2 images.

C. Scaling Efficiency

The adoption of Horovod allowed us to distribute the training
on multiple GPUs and significantly reduce the time required to
complete the optimization of the model. The maximum num-
ber of GPUs used in the present work is 16, a configuration
with which we obtained a speed-up of 14x on the JUWELS-
BOOSTER and 12x on the DEEP-ESB partitions compared
to the use of a single GPU (shown in Fig. 5). The scaling
efficiency was close to 90% on the JUWELS-BOOSTER and

Number of GPUs

Fig. 5. Training time per epoch w.r.t. the number of GPUs on the JUWELS-
BOOSTER and DEEP-ESB partitions.

above 75% on the DEEP-ESB partitions, respectively. In both
cases, the scaling efficiency declined more steeply with 8 and
more GPUs, possibly due to the increased communication time
(time spent to synchronize the gradient among the GPUs) w.r.t.
the computation time (time spent to optimize the model on each
local GPU, which decreases proportionally to the increase of the
number of GPUs, since each GPU is fed a smaller portion of the
entire dataset). It can be noted that the efficiency shrinks more
prominently on the DEEP-ESB partition. This behaviour could
be explained by the fact that on the DEEP-ESB partition each
node is equipped with only one V100 GPU, while each node of
the JUWELS-BOOSTER partition has 4 GPUs. This means that
when using the DEEP-ESB partition the communication is only
inter-node (the nodes are connected through InfiniBand), while
on the JUWELS-BOOSTER partition the communication takes
place both inter- and intra-node (faster NVLink connections).
We performed 3 runs for each experiment, and the reported
results are the average and standard deviation. Fig. 6 shows
the training time that was reduced from 175 and more than
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16 1 —— JUWELS-BOOSTER
~—— DEEP
—— theoretical

= = =
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Training Speed-up
o
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Number of GPUs

Fig.6.  Time per epoch w.r.t. the number of GPUs on the JUWELS-BOOSTER
and DEEP-ESB partitions.

200 seconds using 1 GPU to 12 and 14 seconds per epoch
(16 GPUs) on the DEEP-ESB and JUWELS-BOOSTER par-
titions, respectively. The JUWELS-BOOSTER, which features
the newer A100 GPUs, allowed us to obtain a 20% increase in
performances in terms of training time compared to the V100
installed on the DEEP-ESB partition.

VI. CONCLUSION

In this article, we introduced a method to densify and har-
monize TSs of images acquired by Landsat-8 and Sentinel-2
satellite. The proposed method, which is based on a multispectral
adaptation GAN, was applied to a TS which covers 6 acquisitions
in 2018. We designed an experimental setup to validate our
approach by comparing it with the well established HLS. The
results obtained demonstrate that the proposed GAN is able to
accurately reconstruct the spectral properties of Landsat-8 by us-
ing the Sentinel-2 images. Moreover, the qualitative comparison
with the baseline method confirms the quantitative evaluation
of the spectral distortion metrics. Although the physical model
employed to harmonize Sentinel-2 and Landsat-8 is a powerful
tool to generate long and dense TSs of optical satellite images,
the proposed method achieves more accurate results from the
spectral view point. Another important result is provided by the
classification accuracy obtained when considering the TS of 6
images, which allow us to test the capability of the network
to accurately predict synthetic Landsat-8 images never used to
train the MGAN. The OA% was increased from 87.83% (TS
of 5 synthetic Landsat-8 images) to 91.53 % (TS of 6 synthetic
Landsat-8 images). Moreover, we deployed the entire workflow
in an HPC environment, and with the utilization of Horovod we
could make an efficient use of the resources provided by such
system, reducing the time required for the training of the model.

Although in this work we demonstrated that our approach
can successfully densify TSs of Landsat-8 images, several chal-
lenges remain open. We focused our attention on one single
region where we could validate our method also in terms of
classification; however, our approach should be also extended
to include different areas in the future. A strategy to ingest new
data from different TSs and scale the training should be drawn
up, in order to make the training of the models with larger amount
of data feasible in a reasonable amount of time. Further effort

should be also put on finding the optimal hyperparameters of
the training, such as the optimizers, learning rate, scheduler.
Neural architecture search could be employed to optimize the
structure of the model, i.e., the number and type of layers,
the activation functions, etc. Further loss functions should be
also added, although this would significantly increase the space
of the hyperparameters search, and a tradeoff with available
computational resources should be found. A repository with the
code is available at.’
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ABSTRACT

This paper presents an approach that aims to produce a Time-
Series (TS) of consistent Land-Cover (LC) maps, typically
needed to perform environmental monitoring. First, it creates
an annual training set for each TS to be classified, leverag-
ing on publicly available thematic products. These annual
training sets are then used to generate a set of preliminary
LC maps that allow for the identification of the unchanged
areas, i.e., the stable temporal component. Such areas can
be used to define an informative and reliable multi-year train-
ing set, by selecting samples belonging to the different years
for all the classes. The multi-year training set is finally em-
ployed to train a unique multi-year Long Short Term Mem-
ory (LSTM) model, which enhances the consistency of the
annual LC maps. The preliminary results carried out on three
TSs of Sentinel 2 images acquired in Italy in 2018, 2019 and
2020 demonstrates the capability of the method to improve
the consistency of the annual LC maps. The agreement of the
obtained maps is & 78%, compared to the ~ 74% achieved
by the LSTM models trained separately.

Index Terms— Deep Learning (DL) Models, Long Short
Term Memory (LSTM), Time-Series (TS) of Consistent
Land-Cover (LC) Maps, Multi-year training set.

1. INTRODUCTION
The dense Time-Series (TS) of images with a worldwide cov-
erage provided by Sentinel 1 and Sentinel 2 allow the produc-
tion of large-scale Land-Cover (LC) maps in a timely manner
[1]. For this reasons, several methods have been recently pro-
posed to produce maps at country, continental or global scale
[2, 3]. However, when the maps are produced separately there
is the risk of showing unrealistic year-to-year LC changes.

Part of this work was performed in the CoE RAISE project which has
received funding from the European Union’s Horizon 2020 Research and
Innovation Framework Programme H2020-INFRAEDI-2019-1 under grant
agreement no. 951733. The authors gratefully acknowledge the computing
resources from the DEEP-EST project, which received funding from the Eu-
ropean Union’s Horizon 2020 research and innovation programme under the
grant agreement no. 754304.

978-1-6654-2792-0/22/$31.00 ©2022 IEEE

The map consistency is crucial when monitoring complex en-
vironmental processes such as desertification, arctic greening
or soil erosion. While a lot of effort has been devoted to gen-
erating annual maps, little has been done for the production
of consistent thematic products.

In [4] a method for mapping global LC types from 2001 to
2010 at 250 m resolution with multiple year TSs of MODIS
data is proposed. The strategy is to generate a map for each
single year by using the data acquired in the preceding and
subsequent years as well. In [5], the authors propose to ap-
ply a Hidden Markov Model (HMM) as a post-processing
step to a TS of LC maps to help distinguish real LC change
from spurious changes arising from errors in classification.
On the one hand, these methods have demonstrated improve-
ments on the temporal consistency of classification maps. On
the other hand, these strategies may lead to the risk of los-
ing inter-annual LC changes, especially when the analysis in-
cludes long TSs of data.

In this paper, we propose a novel approach which aims
to produce a TS of consistent annual LC products based on
the Long Short Term Memory (LSTM) multitemporal Deep
Learning (DL) model. Contrary to the above-mentioned ap-
proaches, our method uses only the TS of the year under
study and does not impose constraints with the application
of the post-processing analysis. Furthermore, instead of sepa-
rately classifying the TSs of Earth Observation (EO) data ac-
quired in different years, our method trains one LSTM model
with the multi-year training set to produce a TS of consistent
LC maps. First, it extracts a training set per year leveraging
on publicly available thematic product. The annual training
sets are used to separately train different Random Forest (RF)
models to detect unchanged area, which can be used to pro-
duce a reliable multi-year training set. Finally, the multi-year
LSTM model is trained to produce a set of annual LC maps.
The advantages of the proposed approach are: (1) the auto-
matic production of a multi-year training set, (2) the use of a
LSTM for capturing the temporal trends, and (3) the training
of a unique LSTM model using multi-year TSs of EO data,
which enhances the consistency of the annual LC maps.
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Fig. 1: Flow chart of the proposed approach which aims to produce a TS of consistent LC maps.

2. PROPOSED MULTI-YEAR MAPPING METHOD

Figure 1 shows the block-scheme of the proposed method
made up of three main steps: (i) the annual training set pro-
duction, (ii) the multi-year training set production, and (iii)
the multi-year LC maps production.

2.1. Problem Formulation and Notation

In this section we formalize the multi-year LC mapping prob-
lem and define the notation used in the paper. Let TSV =
(XY, X387, - -+ ,XY") be the TS made up of the g images ac-
quired in the ith year, where X¥' € R™*"*b i5 a multi-
spectral image having m x n pixels and b spectral channels,
withj =[1,--- ,qJandi = [1,--- , k]. The proposed method
assumes that the £ TSs are atmospherically corrected, are
made up of the same number of ¢ images, and are consis-
tent from the temporal view point (the acquisition dates of the
images in all the TSs are the same) [6]. Let MY* € R™*™ be
a publicly available thematic product contemporary to one TS
of EO data considered and having LC classes Q = {w, }Y_;.
Here for simplicity we assume that the map is contemporary
to the first TS, i.e., TSY*, however this is not a strict require-
ment. The map is assumed to be co-registered to the EO data
and to have the same spatial resolution.

The goal of the method is to generate a TS of consis-
tent annual LC maps {Myl,MyQ, e ,Myk} leveraging on:
(i) the publicly available thematic product MY to support
the production of a multi-year training set, (ii) the temporal
correlation existing between multi-year TSs acquired in the
same study area {TSY', TSY? ... | TSY*} and, (iii) the capa-
bility of the LSTM network to capture the temporal dynamic.
Please note that the proposed method can be applied to any
EO data without geographical constrains due to the availabil-
ity of many global LC maps.

2.2. Annual Training Set Production

This step aims to automatically generate an annual training
set for each TS of EO data that have to be classified, i.e.,
{TS¥}£_,, which will be used in the next step for the pro-
duction of the multi-year training set. To this end, we con-
sidered an approach similar to the one presented in [7]. The
method uses the information provided by the EO data to au-
tomatically detect and extract the most reliable map labeled
units. In greater detail, for each LC class w,,, we first select
all the samples in the ith TSY associated to this label. Then,
an automatic clustering analysis is performed to remove spu-
rious samples not correctly associated to that label (i.e., pos-
sible changes occurred on the ground or there are classifica-
tion errors present in the map). To this end, the class samples
are partitioned into t,,, clusters {C_, i Cim% s, Clon )
according to their spectral similarity. Based on the majority
decision rule, it is reasonable to assume that the dominant
cluster is made up of pixels having the highest probability to
be correctly associated to w,. The clustering is applied in
a feature space made up of a set of robust spectral indices
strictly connected to the physical meaning of the LC classes,
i.e., Vegetation Indices (i.e., NDVI and EVI), Water Index
(NDWI), Snow Index (NDSI) and Soil Index as computed in
the Sen2Cor processor'.

Once the most reliable map units are identified per class,
a stratified random sampling strategy is applied to generate
training sets having LC prior probabilities proportionate to
those reported in MY'. At the end of this step, the method
generates a set of annual training sets {TrSet' }¥_ . where
TrSet” = {(xi",1}")}; is the training set associated to the
ith year having xj* € R'* and I{" € Q, with s = ¢ x bis the
number of spectral features per number of images in the TS.

Ihttps://sentinels.copernicus.eu/web/sentinel/
technical-guides/sentinel-2-msi/level-2a/algorithm
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2.3. Multi-year Training Set Production

The goal of this step is the production of a multi-year training
set by selecting samples belonging to different years for all
the classes. Such training set aims to help the LSTM model
in learning the different spectral signatures of the same LC
class in the different years. First, the obtained annual training
sets {TrSet’ }*_, are used to separately train k RF classi-
fiers, i.e., a RF per TS. Due to the ensemble-learning strategy
that combines a large set of classification trees, such mod-
els are able to deal with the presence of noise in the training
set. The RF classifiers generate a set of preliminary LC maps
{M” M"” ..., M""} that can be used to determine the non-
changed areas, i.e., where all the classified maps agree with
the original thematic product MY!. Such map agreement al-
lows us to select the most reliable unchanged pixels across
the different years. Indeed, even though the maps may also
provide useful information on possible changed areas, in the
considered preliminary implementation of the method we aim
to include only the most reliable samples in the multi-year
training set. At the end of this step, we obtain the multi-year
training set, TrSet = {(x},1}")};, with i = [1,--- , k] and
h =k xb.

2.4. Multi-Year LC Maps Production

The last step of the proposed method aims to produce a set
of consistent TS of LC maps. To this end, we train a unique
LSTM model considering the multi-year training set gener-
ated in the previous step. That model is then used to pro-
duce the TS of LC maps by classifying the corresponding
annual TSs. Please note that, differently from the literature,
the method does not perform any temporal smoothing step to
the TS of annual LC maps. Although effective, such post-
processing step may lead to the loss of changes actually oc-
curring on the ground. For the same reason, the classification
map of each year is generated considering only the TS of that
specific year, instead of considering images acquired in the
preceding and subsequent years. In contrast, the developed
multi-year training set helps the LSTM model to better cap-
ture the different behaviours of the pixels belonging to the
same class in different years, thus implicitly reinforcing the
temporal consistency. In particular, the use of the same LSTM
to generate the TS of LC maps allows the reduction of pixel
noise across the LC maps produced for the different years,
while not hampering the detection of changes occurring on
the ground. At the end of the proposed approach, we obtain
the set of LC maps having () classes will be generated, i.e.,
{M?/I’My27‘ . ’Myk}.

3. DATASET DESCRIPTION
In our study, we make use of acquisitions taken by the
Sentinel-2 satellites. The tile that we analyze is the T32TPS,
covering the area of the Trentino region, Italy. We down-
loaded and pre-processed 20 paired acquisitions for each

of the years 2018, 2019, 2020, with a maximum difference
between the date of acquisition of § = 6 days between the
different years. We excluded observations with considerable
cloud coverage, namely where more than 40% of the pixels
are assigned to clouds in the Scene Classification Layer (SCL)
map. For each year, we extracted two sets of samples ran-
domly selected from the unchanged areas of the output maps
produced by the RF classifiers. The first set is used to train
the multi-year LSTM considering approximately 24.000 sam-
ples, while the second set made up of 12.000 samples was
used to evaluate the loss and accuracy scores on unseen
data at training time. In particular, to extract the annual
training sets we relied on the CORINE Land Cover (CLC)
map [8] available on the European level, considering 10
widespread LC classes, i.e., "Artificial”, ”Grass”, ”Crops”,
”Mineral”, “Rocks”, ”Sand”, “Broadleaves”, “Conifers”,
”Water”, ”Snow” .

4. EXPERIMENTAL SETUP AND RESULTS

To assess the effectiveness of the proposed approach, we
compared the maps obtained with the ones generated by the
LSTM separately trained per year, i.e., the standard base-
line approach. Such single-year LSTM models were trained
considering only the pseudo labels representing that year con-
sidering the corresponding TSs of 20 acquisitions. In con-
trast, the proposed approach was trained considering training
samples extracted from all the TSs of images. To have a
fair comparison, we considered the same LSTM model. In
particular, we base our work on a PyTorch implementation
of a LSTM with 4 layers and hidden dimension equal to
128 2. We trained the LSTM models for 100 epochs with the
Adam optimizer on sequences of 20 observations, each with
10 features (the pixel values of the 10 considered bands),
activating the dropout option. For the prediction, we split
each acquisition in 25 patches of dimension 2560 x 2560px,
and stack the features of each pixel for every observation of
the year to compose the TS. We applied a median filter with
kernel dimension equal to 11 to reduce the noise of the output
thematic maps.

Table 1 shows the LC map agreement achieved per class
and overall considering the standard baseline method, i.e.,
single-year LSTM and the proposed multi-year LSTM. One
can notice that the proposed method is able to increase the
consistency of the results obtained regardless of the LC class
by increasing the overall map agreement of almost ~ 4% for
both years. Figure 2 shows the number of LC changes per
pixel for a portion of the considered study area when using:
(a) the multi-year proposed method, (b) the single-year base-
line method. Moreover, one image of 2018 and the corre-
sponding LC map obtained with the proposed method is re-
ported. From this result, one can notice that the proposed ap-
proach is able to reduce the classification errors at pixel level

2https://github.com/dl4sits/BreizhCrops
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Fig. 2: Portion of the considered study area: (a) number of LC changes per pixel obtained with the proposed multi-year method,
(b) number of LC changes per pixel obtained with the single year baseline method, (c) the true color composition of a Sentinel
2 image acquired in 2018, and (d) corresponding LC map obtained.

Table 1: LC map agreement achieved per class and over-
all considering the standard baseline method, i.e., single-year
LSTM and the proposed multi-year LSTM.

Class Multi-Year LSTM  Single-Year LSTM
2018-2019 2019-2020(2018-2019 2019-2020
Artificial 0.89 0.68 0.93 0.62
Grass 0.69 0.60 0.61 0.42
Crops 0.76 0.81 0.65 0.85
Mineral 0.33 0.51 0.34 0.43
Rocks 0.43 0.46 0.45 0.43
Sand 0.14 0.31 0.05 0.16
Broadleaves  0.85 0.87 0.79 0.84
Conifers 0.81 0.78 0.79 0.77
Shrubland 0.64 0.66 0.63 0.62
Water 0.97 0.98 0.98 0.95
Overall 0.78 0.78 0.74 0.74

as well as to reduce the detection of false changes with respect
to the baseline method.

5. CONCLUSION

This paper presents a novel approach for the production of a
TS of consistent LC maps by taking advantage of the tem-
poral correlation existing between TSs acquired in different
years in the same study area. The method first extracts an an-
nual training set per TS to generate a set of preliminary LC
maps. Then, it exploits the unchanged areas to define a reli-
able and informative multi-year training set to train a unique
LSTM model. The preliminary results obtained demonstrate
the effectiveness of the proposed approach. As future devel-
opment, We plan to delve into the analysis of training methods
to make use of longer TSs. A possible approach that can be in-
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vestigated is the stateful LSTM to retain the cell state among
prediction of sequences from the same pixel. The adoption
of models that rely on both temporal and spatial correlation
should also be considered for the creation of more consistent
output maps.
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Abstract—Land cover (LC) maps generated by the classifi-
cation of remote-sensing (RS) data allow for monitoring Earth
processes and the dynamics of objects and phenomena. For accu-
rate LC variability quantification in envirc tal itoring,
maps need to be spatiotemporally consistent, continually updated,
and indicate permanent changes. However, producing frequent
and spatiotemporally consistent LC maps is challenging because
it involves balancing the need for temporal consistency with
the risk of missing real changes. In this work, we propose a
scalable and semiautomatic method for generating annual LC
maps with labels that are consistently applied from one year to
the next. It uses a Transformer deep-learning (DL) model as a
classifier, which is trained on satellite time series (TS) of images
using high performance computing (HPC). The trained model can
generate stable maps by shifting the prediction window along the
temporal direction. The effectiveness of the proposed approach is
tested qualitatively and quantitatively on a multiannual Sentinel-
2 dataset acquired over a three-year period in a study area located
in the southern Italian Alps.

Index Terms— Deep learning (DL), high-performance comput-
ing, remote sensing (RS), spatiotemporally consistent land cover
(LC) maps, supervised classification, time series (TS).

I. INTRODUCTION

LASSIFICATION maps are vital for analyzing patterns

on the Earth’s surface across many research areas.
Using open remote-sensing (RS) data, such as Sentinel-2 and
Landsat-8 images, we can avoid the high costs associated with
field surveys. These data enable more frequent global mapping
of land cover (LC) classes, which is crucial for the timely
identification of changes from extreme weather events and
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natural disasters as well as tracking urban construction trends.
Brown et al. [1] used Google Earth Engine to retrieve Sentinel-
2 data and train a convolutional neural network (CNN) model
to generate frequent LC maps. The European Space Agency
(ESA) has also recently released a global LC product based
on Sentinel-2 and Sentinel-1 data! with a spatial resolution of
10 m. Although these approaches can produce accurate LC
products, they do not avoid the risk of generating spatiotem-
porally inconsistent classification maps that show unrealistic
year-to-year LC changes.

To guarantee spatiotemporal consistency across temporal
updates, LC maps need to be generated with algorithms that
are robust to noise (i.e., false alterations do not hinder real
changes) and capable of generalizing on a temporal level.
Furthermore, classification schemes must use consistent setups
over time to ensure that LC classifications are semantically
interoperable and can be compared. A method was proposed
in [2] for mapping global LC types using multiple years time
series (TS) of MODIS data. The method involves generating
a yearly map using data from the preceding and subsequent
years. Abercrombie and Friedl [3] proposed using a hidden
Markov model (HMM) as a postprocessing step on a TS of LC
maps to differentiate real LC change from spurious changes
caused by classification errors. Recent works have focused on
improving the temporal consistency of multiyear classification
maps while maintaining sensitivity to LC changes [4], [5].

While these methods have improved the temporal consis-
tency of classification maps, they may also risk obscuring
inter- and intraannual LC changes, particularly when analyzing
long TS of data. In addition, these methods are typically
computationally demanding. This letter presents a scalable,
semiautomatic approach using a Transformer deep-learning
(DL) model to produce spatiotemporally consistent LC maps
by continually ingesting satellite data. To this end, the pro-
posed approach decouples the stable component of the LC
map from the detection of changes, leveraging the ability of
the self-attention Transformer model to classify long TS of RS
data accurately. Finally, a user-guided analysis is requested to
validate the LC mapping result obtained from the semantic
viewpoint. The main contribution of this work is the proposal
of a method that can use high-performance computing (HPC)
systems to produce high-resolution LC maps that are: 1)
regularly updated (e.g., annually); 2) able to identify perma-
nent changes accurately; and 3) spatiotemporally consistent to

'ESA WorldCover 2021: https://worldcover2021 .esa.int/.
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Fig. 1. Proposed workflow that classifies the intrayear RS data stream to generate spatiotemporally consistent LC maps. The three main steps of the method
are highlighted in green. In the final step, the user is requested to validate the automatically detected changes only from the semantic viewpoint.

facilitate the monitoring of ongoing environmental processes
(e.g., desertification, urbanization, and deforestation).

II. CONSISTENT MULTIYEAR MAPS PRODUCTION

Fig. 1 shows the workflow of the proposed method (PM),
which is based on three main steps: 1) intrayear RS data
stream classification; 2) analysis of the LC label sequence;
and 3) the production of multiyear LC maps. To generate
spatiotemporal coherent thematic products, the PM produces
an up-to-date LC map every time new RS data is acquired.
This condition allows us to generate an intrayear sequence
of LC labels that can be used to: 1) reduce spurious year-
to-year changes; 2) strengthen the consistency of the annual
maps; and 3) continually improve the accuracy of previously
generated maps via a backpropagation strategy. To ensure
high-quality mapping, the user is involved in the final step
to revise the obtained classification results only from the
semantic viewpoint, that is, approve/discard the presence of
a change and assign the new LC label.

A. Problem Formulation and Notation

Annual LC maps are typically generated by classifying TS
of RS images instead of individual RS data, as it yields more
accurate results. Although this approach is effective, it has
two main limitations. First, the classifier assigns each pixel
the LC label that best fits most of the RS images in the
TS. This leads to accurate results for stable LC components
and land surface seasonality (e.g., crop phenology), while it
may discard permanent changes visible in a small portion of
the TS (e.g., occurred at the end of the year). Second, the
spatiotemporal consistency of annual LC maps generated by
separately classifying different TS of images is affected by
classification errors that do not indicate real changes.

Let us focus on the first target year y;, where a training
set representing the k LC classes present in the scene Q =
{w1, wa, ..., w;} is used to train a classification model C”'.
Let TSi’l’ = (X}, Xy, ..., X,) be the TS of n RS images of
v1, where X; € R™4*? is the RS image acquired at time
t; having r x g pixels and b spectral channels. By applying
C"" to the TS of images acquired from ¢ to t,, we generate
the LC map Mﬁ'l’. Let TS:;;‘“ = Xy+1, Xu42, - .., Xpn) be the
TS of RS images acquired for the subsequent year y,, and
Mzz'ﬂ be the corresponding annual map. Let x' be the i pixel
of the considered TS, which is associated with the annual
LC labels );’ and y,’ visible in M and M;:j'ﬂ, respectively,
where y, , y; € . For simplicity, we focus here on two years.
However, the PM can be easily scaled to multiyear data.

B. Intrayear RS Data Stream Classification

To strengthen the consistency of the annual LC maps, the
intrayear RS data stream is classified using the same model C
by shifting the prediction window along the temporal direction.
For instance, at the beginning of y,, the updated version of
Mi’l’ (ie., Mig*‘) is generated by classifying the TS of images
TS;*' = (X5, X3, ..., X,41), which includes the first image
of y» and excludes the first image of yj, that is, X,4+; and
X, respectively. In this letter, we use a Transformer deep
learning (DL) model as a classifier, which has rapidly chal-
lenged recurrent networks in tasks using sequences of data [6].
Transformers can be scaled efficiently because they are based
on the concept of attention, which is inherently nonrecurrent,
allowing sequence parallelization during training. Moreover,
Transformers can model both short- and long-term dependen-
cies since each attention head attends to information from
different positions in the sequence. Multiple heads of attention
are used to obtain different representations of this attention
information. This leads to stable classification results obtained
even under varying cloud cover conditions, thus enabling the
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classification of the continuous stream of RS data without
needing any data preparation step. At the end of y», the method
generates a TS of LC maps (Mj’l', M;;*', e Mfi ,) obtained
by classifying the TS (TS!", TS;"', ..., TS/ ). At the end of
this step, for each pixel x’, we have an LC label sequence
(yj'”,yy’;ﬂ,...,y,"m) (where n and m are the number of RS
images acquired in the year y; and y», respectively) that allows
us to model the temporal trajectory of each pixel, independent
of neighboring pixels (see Fig. 1).

C. Analysis of the LC Label Sequence

Once the label sequences are completed for at least two
years, we can start the production of the spatiotemporal
consistent annual LC maps. LC maps can be divided into
three main components: 1) stable component ¢,,; 2) sea-
sonal component ¢, (e.g., snow and crop phenology); and
3) permanent changes ¢, (e.g., deforestation and urbanization).
In this work, we focus our attention on annual maps that
aim to represent stable components and interannual permanent
changes, neglecting the seasonality of the land surface. For
instance, for the “Snow” LC class, only the permanent snow-
fields are represented in an annual thematic product, while the
snow patches visible only in the winter period are typically
neglected.

To automatically discriminate the stable LC component
from the land surface seasonality and the permanent changes,
we perform an analysis of the LC label sequence generated
in the previous step, that is, (M;'I‘, Mf;*‘, o M;’”f+ ). First, the
labels are mapped from categorical into numerical data. Then,
we apply a 1-D median filter € R'*? with length equal to
p to the LC labels sequence pixel, that is, (y{, ¥’ ..., ¥l ),
where i € [1,r x ¢], to reduce noisy classification results.
The binary difference between the obtained annual maps M
and M;/’+ | is computed (i.e., the standard method used in
the literature to detect changes between maps). This binary
output provides all the changes that occurred on the ground,
that is, [¢c, ¢s]. To remove noisy changes and determine
when they occurred, the binary intrayear LC label sequence is
convoluted with a step function to retrieve the maximum. The
date of permanent changes can be automatically computed by
shifting its index backward along the temporal axis of half of
the inference window. Finally, we disentangle the permanent
changes ¢, from the seasonal ones ¢,. In the considered
implementation of the method, we assume that a change can
be identified as permanent if: 1) it is visible in the TS of LC
maps for at least half of the inference window (stable change);
2) the LC sequence must not return to its initial LC more than
once since this kind of patterns typically belongs to seasonal
changes ¢;; and 3) changes that occurred at the beginning of
the TS of LC are discarded to avoid unreliable changes.

D. Multiyear LC Maps Production

In the final step, the method generates the spatiotemporally
consistent TS of LC maps by embedding the permanent
changes identified in the previous step. Changes having an area
lower than a certain threshold (ath) are discarded. By shift-
ing the prediction window along the temporal direction, the
method can capture permanent changes that occur at any time
of the year. The changes are correctly embedded in the annual
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LC maps according to the date estimated in the previous step.
The estimated change date is injected into the yearly LC output
to: 1) increase the accuracy of previously generated LC maps
and 2) avoid incorrectly identifying changes in the subsequent
years. The new yearly map is produced by adding the detected
permanent changes onto the initial map. The integration of the
automatically detected permanent changes is finally confirmed
by the user, who can visually check their presence in the
RS data and assign the new LC label. We would like to
remark that the user is involved only in checking the change
from the semantic viewpoint (i.e., the presence of the change
and the new LC label). The PM automatically identifies the
identification of the changes and their geometrical extent in
an unsupervised way. The proposed quality control procedure
carried out by the user aims to increase the reliability of the
final thematic products.

ITI. DATASET DESCRIPTION AND EXPERIMENTAL SETUP

The considered study area is located in the northeast part of
Italy, where a major deforestation event occurred in 2018 due
to storm Vaia, which caused significant forest damage. To gen-
erate the TS of annual LC maps, we considered the Sentinel-2
data (Tile TPS32) able to acquire dense TS of images at
high spatial resolution (10 m). The considered TS comprises
45 images acquired from January 2018 to December 2020,
that is, 15 yearly acquisitions equally distributed over the
three years. The length of the median filter p = 5, while the
area threshold ath is equal to 100 according to the minimum
mapping unit of the changes that we aim to detect. Only
the images having cloud coverage lower than 40% were
automatically downloaded through the Sentinelsat API. The
available training set representative of 2018 was reporting
nine LC classes, namely, “Artificial land,” “Grass,” “Crops,”
“Bareland,” “Broadleaves,” “Conifers,” “Shrub,” “Water,” and
“Snow.” The 2018 training dataset is made up of 10000 points
per class (a total of 80 000 samples for the training set), located
in an area spatially disjoint from the predicted one used in the
experiments.

We used a Transformer with five encoding layers, each with
two attention heads. We set the number of expected features in
the encoder layers dpyogel = 128. No positional embedding was
used. We carried out the training of the model for 100 epochs.
The Adam optimizer [7] was used with a cyclic learning rate
schedule with its initial value set to 0.003. The code is based
upon a PyTorch implementation of the Transformer [8]. The
experiments were run on the JURECA-dc?> HPC at the Jiilich
Supercomputing Center (JSC), in particular, on the partition
where each node is equipped with four Nvidia A100 graphics
processing units (GPUs). The Transformer was trained from
scratch using a training dataset representing the LC present
in the scene, associated with CORINE LC labels, for the year
2018 (i.e., on the sequence of 15 acquisitions), and it was used
to generate the map of the first target year, that is, M;'l’ and the
intrayear LC maps. We used PyTorch DistributedDataParallel
to scale the training of the Transformer on multiple GPUs,
speeding it up from ~500 s on one GPU to ~45 s on 16 GPUs.
That model is then used for inference, shifting the prediction

2JURECA-dc: https://apps.fz-juelich.de/jsc/hps/jureca/index.html.
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TABLE 1
INTERYEAR AGREEMENT OF LC MAPS OF 2018-2020 EVALUATED AT THE CLASS LEVEL BY COMPARING
THE PM WITH THE BASELINES: 1) RF AND 2) TRANSFORMER
RF Transformer PM
Class 2018-2019  2019-2020 2018-2020 [ 2018-2019 2019-2020 2018-2020 | 2018-2019 2019-2020 2018-2020
[ Artificial Tand 85.4 83.1 80.3 79.3 88.0 84.4 100 100 100
Grass 87.5 79.6 79.6 84.7 52.7 62.6 100 100 100
Crop 88.0 85.1 81.2 79.3 71.8 74.2 99.9 99.9 99.9
I Barcland 70.5 734 58.3 721 46.4 46.4 99.8 98.8 98.7
Broadleaves 88.1 90.5 82.8 79.6 88.1 87.3 99.9 99.8 99.7
Conifers 87.0 86.9 79.0 88.3 83.0 84.6 97.5 95.5 93.1
Shrub 74.3 81.8 66.7 45.0 62.8 64.6 99.9 99.9 99.9
Water 97.2 97.7 96.4 93.4 78.1 80.1 99.9 99.9 99.9
Overall 86.6 86.7 79.9 80.4 80.3 81.2 99.1 98.5 97.7
TABLE Il v

PRECISION, RECALL, F1 SCORE, AND INTERSECTION OVER UNION (IoU)
FOR THE RF, TRANSFORMER, AND PM AGAINST THE REFERENCE
MAP REPRESENTING THE LC CHANGES

precision | recall | FI score | ToU
RF 0.20 0.67 0.30 0.18
Transformer 0.13 0.75 0.22 0.13
PM 0.72 0.59 0.65 0.48

window of length equal to 15 acquisitions along the temporal
direction from the end of 2018 to the end of 2020. Due to
the availability of 30 Sentinel-2 images acquired in 2019 and
2020, 30 intraannual maps have been generated. We performed
the inference for each pixel of the TPS32 tile (~120000 000
pixels) to generate an output label for each element of the
input sequence. Reference data created by expert annotators
were used to validate the results.’

IV. EXPERIMENTS RESULTS

The multiyear annual maps generated by the PM are
compared with those generated by separately classifying the
annual TS of Sentinel-2 images with the: 1) Transformer
and 2) random forest (RF). While the comparison with the
Transformer allows us to emphasize the added value of the
PM, RF is typically used as the baseline method due to its
robustness to noise. Fig. 2 shows a qualitative comparison of
the agreement between the LC maps produced by the baseline
methods and the PM. As expected, the baseline methods’
interyear agreement appears noisier than that produced by the
PM, which can correctly detect major changes while keeping
the stable LC component invariant between years. These qual-
itative results are confirmed by the quantitative ones reported
in Table I. As expected for the “Bareland” and “Broadleaves”
classes, all the methods show an agreement lower than 90%
due to the impact of the permanent deforestation event that
occurred in November 2018, which also had consequences
in subsequent years. However, although no changes occurred
for most of the LC classes, the baseline methods show lower
interyear agreement than the one achieved by the PM. For
instance, the “Artificial land” class presents an agreement
lower than 90% for the baselines, while the PM correctly
keeps this class in the stable LC component. Similarly, the

3Vaia  storm  (Italy):  https://www.politicheagricole.it/flex/cm/pages/
ServeBLOB.php/L/IT/IDPagina/18158.
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[Jtrue negative [l faise positive [l fase negative [l true positive

Fig. 2. Comparison of the multiyear (2018-2020) LC maps agreement
(a) 2018 LC map M;"’ produced by the Transformer, (b) RF change map,
(c) Transformer change map, and (d) PM change map. The true positive
(green), true negative (white), false positive (red), and false negative (blue)
are computed considering the reference change map.

“Shrub” class is frequently confused with “Grass,” leading to
LC variation in the annual maps that do not correspond to real
changes. Table II reports quantitative results of the detected
change for the three methods considering the reference change
map. The PM shows significantly better scores for the detected
changes than results obtained by the two baseline methods
because of the sharp reduction of false-positive changes. Fig. 3
shows a small portion of the study area. The Sentinel-2 images
acquired in 2018-2020 clearly show deforestation in late 2018
(i.e., November 2018). Differently from the PM, neither the RF
nor the baseline Transformer can detect it in the 2018 annual
maps. This is a common problem when generating annual
LC maps. The changes that occurred at the end of the year
are not identified by the classifier. Note that the LC changes
that occurred at the end of 2018 are correctly identified by
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Fig. 3. Examples of multiyear maps and changes obtained for a small portion
of the considered study area for 2018-2020 using the: 1) Transformer, 2) RF,
and 3) PM. The Sentinel-2 images acquired in 2018-2020 are reported with
the changes reference map.

the PM when moving the prediction window into 2019 (i.e.,
when the change is present in at least eight images out of
the 15 of the considered prediction window). However, the
date of the change can be correctly backpropagated in the
2018 annual map when the user validates the presence of
the change. Moreover, from the results obtained, one can
see the spatiotemporal consistency of the LC maps generated
by the PM, in which classification errors present at the pixel
level are neglected. Furthermore, because of the visual check
of the user, the correct LC label can be assigned to the
changed areas, that is, “Bareland,” thus ensuring high-quality
mapping. In contrast, both the baseline methods misclassify
the deforestation areas with “Artificial land” pixels because of
the similarity of the urban and bare rocks spectral signatures.

V. CONCLUSION

We proposed a method for updating LC maps and detecting
permanent changes while maintaining spatiotemporal consis-
tency in the resulting products.* In the future, we plan to

4GitHub  repository:  https:/gitlab.jsc.fz-juelich.de/sdlrs/land  cover-
classification-framework/-/tree/rocco-DL-module.
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investigate how to extract additional information from the
Transformer model, such as visualizing the attention weights,
to provide users with more detailed insights into the temporal
dynamics of the LC products. Although we did not apply
any manual correction to the produced maps in this work,
active learning methods could be investigated to continually
provide feedback to the model and produce more accurate LC
maps. Dynamically adjusting the set of LC classes is vital
for enhancing model robustness and reliability by addressing
unpredictability in real operative scenarios, ensuring consistent
performance and adaptability to variations on the ground.
Moreover, we plan to update the initial training data to
maintain reliable LC products and, in future developments, test
the method on datasets from various areas to address different
classification challenges.
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B. Code Repositories

Adhering to the principles of FAIR (Findability, Accessibility, Interoperability, and Reusabil-
ity) [105], the author has contributed to the following open source repositories:

e https://gitlab.com/rocco.sedona/mdpi-paper-bigearth, utilizing a ResNet50
on a version of BigEarthNet [95] converted to HDF5 for large scale training on HPC
systems.

e https://gitlab.com/rocco.sedona/igarss2020_paper, which closely follows
the aforementioned work but includes also the LARS optimizer [111].

 https://gitlab.jsc.fz-juelich.de/sedona3/igarss2021_sat6, with the
code for training a ResNet50 on the SAT4 and SAT6 datasets [7] with the LAMB
optimizer [112].

e https://gitlab. jsc.fz-juelich.de/sedona3/mgan collects the Tensorflow code
utilized for the harmonization of S2 and S2 data using a multispectral adaptation
of pix2pix.

e The branch https://gitlab.jsc.fz-juelich.de/sdlrs/land-cover-classif
ication-framework/-/tree/rocco-DL-module (currently private, to be opened
once the review of Paper VI is finished) collects the code used by the author to train
LSTM and Transformer models on TS of data acquired by S2 for LC classification.

e The author contributed with the code for pre-processing BigEarthNet and training

DL models using data parallelism to the repository located at https://gitlab. j
sc.fz-juelich.de/CoE-RAISE/FZJ/switching bs.
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